On the exceptional set for the 2 k -twin primes problem

Alberto Perelli; János Pintz

Compositio Mathematica (1992)

  • Volume: 82, Issue: 3, page 355-372
  • ISSN: 0010-437X

How to cite

top

Perelli, Alberto, and Pintz, János. "On the exceptional set for the $2k$-twin primes problem." Compositio Mathematica 82.3 (1992): 355-372. <http://eudml.org/doc/90156>.

@article{Perelli1992,
author = {Perelli, Alberto, Pintz, János},
journal = {Compositio Mathematica},
keywords = {exceptional set; twin primes; Hardy-Littlewood conjecture; binary Goldbach problem},
language = {eng},
number = {3},
pages = {355-372},
publisher = {Kluwer Academic Publishers},
title = {On the exceptional set for the $2k$-twin primes problem},
url = {http://eudml.org/doc/90156},
volume = {82},
year = {1992},
}

TY - JOUR
AU - Perelli, Alberto
AU - Pintz, János
TI - On the exceptional set for the $2k$-twin primes problem
JO - Compositio Mathematica
PY - 1992
PB - Kluwer Academic Publishers
VL - 82
IS - 3
SP - 355
EP - 372
LA - eng
KW - exceptional set; twin primes; Hardy-Littlewood conjecture; binary Goldbach problem
UR - http://eudml.org/doc/90156
ER -

References

top
  1. [1] H. Davenport: Multiplicative Number Theory (2nd edn), Springer-Verlag, 1980. Zbl0453.10002MR606931
  2. [2] P.X. Gallagher: A large sieve density estimate near σ=1, Invent. Math.11 (1970), 329-339. Zbl0219.10048
  3. [3] G.H. Hardy, and J.E. Littlewood: Some problems of 'Partitio Numerorum' V. A further contribution to the study of Goldbach's problem, Proc. London Math. Soc. (2)22 (1924), 46-56. Zbl49.0127.03JFM49.0127.03
  4. [4] D.R. Heath-Brown: The difference between consecutive primes, J. London Math. Soc. (2)18 (1978), 7-13. Zbl0387.10025MR491554
  5. [5] M.N. Huxley: On the difference between consecutive primes, Invent. Math.15 (1972),155-164. Zbl0241.10026MR292774
  6. [6] Yu. V. Linnik: Some conditional theorems concerning the binary Goldbach problem (Russian), Izv. Akad. Nauk SSSR16 (1952), 503-520. Zbl0049.03104MR53961
  7. [7] H.L. Montgomery: Topics in Multiplicative Number Theory, Springer L.N. 227, 1971. Zbl0216.03501MR337847
  8. [8] H.L. Montgomery and R.C. Vaughan: The exceptional set in Goldbach's problem, Acta Arith. 27 (1975), 353-370. Zbl0301.10043MR374063
  9. [9] A. Perelli: Local problems with primes I, J. reine angew. Math. 401 (1989), 209-220. Zbl0677.10028MR1018060
  10. [10] K. Prachar: Primzahlverteilung, Springer-Verlag, 1957. Zbl0080.25901MR87685
  11. [11] B. Saffari and R.C. Vaughan: On the fractional parts of x/n and related sequences II, Ann. Inst. Fourier27 (1977), 1-30. Zbl0379.10023MR480388
  12. [12] P. Shiu: A Brun-Titchmarsh theorem for multiplicative functions, J. reine angew. Math. 313 (1980), 161-170. Zbl0412.10030MR552470
  13. [13] R.C. Vaughan: The Hardy-Littlewood Method, Cambridge Univ. Press, 1981. Zbl0455.10034MR628618
  14. [14] D. Wolke: Über das Primzahl-Zwillingsproblem, Math. Ann.283 (1989), 529-537. Zbl0646.10033MR990587

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.