La forme hermitienne canonique sur la partie invariante de la cohomologie de la fibre de Milnor d'une singularité isolée de polynôme quasi-homogène

Mohammed El Amrani

Compositio Mathematica (1992)

  • Volume: 83, Issue: 1, page 107-125
  • ISSN: 0010-437X

How to cite

top

El Amrani, Mohammed. "La forme hermitienne canonique sur la partie invariante de la cohomologie de la fibre de Milnor d'une singularité isolée de polynôme quasi-homogène." Compositio Mathematica 83.1 (1992): 107-125. <http://eudml.org/doc/90157>.

@article{ElAmrani1992,
author = {El Amrani, Mohammed},
journal = {Compositio Mathematica},
keywords = {integration on fibers; periods at infinity; quasi-homogeneous polynomial; isolated critical point},
language = {fre},
number = {1},
pages = {107-125},
publisher = {Kluwer Academic Publishers},
title = {La forme hermitienne canonique sur la partie invariante de la cohomologie de la fibre de Milnor d'une singularité isolée de polynôme quasi-homogène},
url = {http://eudml.org/doc/90157},
volume = {83},
year = {1992},
}

TY - JOUR
AU - El Amrani, Mohammed
TI - La forme hermitienne canonique sur la partie invariante de la cohomologie de la fibre de Milnor d'une singularité isolée de polynôme quasi-homogène
JO - Compositio Mathematica
PY - 1992
PB - Kluwer Academic Publishers
VL - 83
IS - 1
SP - 107
EP - 125
LA - fre
KW - integration on fibers; periods at infinity; quasi-homogeneous polynomial; isolated critical point
UR - http://eudml.org/doc/90157
ER -

References

top
  1. [B1] D. Barlet: Développement asymptotique des fonctions obtenues par intégration dans les fibres, Inv. Math.68 (1982) pp. 129—174. Zbl0508.32003
  2. [B2] D. Barlet: La forme hermitienne canonique sur la cohomologie de la fibre de Milnor d'une hypersurface à singularité isolée, Inv. Math.81 (1985) pp. 115-153. Zbl0574.32011MR796194
  3. [B3] D. Barlet.Le calcul de la forme hermitienne canonique pour un polynôme homogène à singularité isolée, Journal für die reine und angewandte mathematic, Band 362 (1985) pp. 179-196. Zbl0581.32009MR809974
  4. [Ca] H. Cartan.Quotient d'un espace analytique par un groupe d'automorphismes, dans "Algebraic Geometry and Topology", Princeton Mathematical Series12, Princeton (1957) pp. 90-102. Zbl0084.07202MR84174
  5. [C] C. Chevalley.Invariants of finite groups generated by reflections, Am. J. Maths, vol. 77 (1955) pp. 778-782. Zbl0065.26103MR72877
  6. [D1] A. Dimca.Singularities and coverings of weighted complete intersection, Journal für die reine un angewandte mathematic, Band 362 (1986) pp. 184-193. Zbl0576.14047MR833017
  7. [D2] A. Dimca and S. Dimiev.On analytic coverings of weighted projective spaces, Bull. London Math. Soc.17 (1985) pp. 234-238. Zbl0546.14006MR806423
  8. [De] C. Delorme: Espaces projectifs anisotropes, Bull. Soc. Math. France103 (1975) pp. 203-223. Zbl0314.14016MR404277
  9. [Do] I. Dolgachev.Weighted projective spaces, Lecture Notes in Math.956 (1982). Zbl0516.14014MR704986
  10. [D-K] V.I. Danilov and A.G. Khovanskii, Newton polyhedra and an algorithm for computing Hodge-Deligne numbers, Mathematics of the USSR-IZVESTIA (1987) pp. 279-298. Zbl0669.14012
  11. [G] A. Grothendieck, Sur quelques points d'algèbre homologique, Tôhoku Math. J.9 (1957) pp. 119-221. Zbl0118.26104MR102537
  12. [L] J. Leray, Problème de Cauchy III, Bull. Soc. Math. France87 (1959) pp. 81-180. Zbl0199.41203MR125984
  13. [M] J. Milnor, Singular points of complex hypersurfaces, Annals of Math. Studies61Princeton (1968). Zbl0184.48405MR239612
  14. [M-O] J. Milnor and P. Orlik, Isolated singularities defined by weighted homogeneous polynomials, Topology9 (1970) pp. 385-393. Zbl0204.56503MR293680
  15. [P] D. Prill, Local classification of quotients of complex manifolds by discontinuous groups, Duke Math. J.34 (1967) pp. 375-386. Zbl0179.12301MR210944
  16. [S] K. Saito: Einfach-elliptische singularitaten, Inv. Math.23 (1974) pp. 289-325. Zbl0296.14019MR354669
  17. [Sa] I. Sataké, On a generalization of the notion of manifold, Proc. N.A.S. of U.S.A. vol. 42 (1956) pp. 359-363. Zbl0074.18103MR79769
  18. [St] J. Steenbrink, Intersection form for quasi-homogeneous singularities, Compositio Mathematica, vol. 34 Fasc. 2 (1977) pp. 211-223. Zbl0347.14001MR453735

NotesEmbed ?

top

You must be logged in to post comments.