A simultaneous Frobenius splitting for closures of conjugacy classes of nilpotent matrices

V. B. Mehta; Wilberd Van der Kallen

Compositio Mathematica (1992)

  • Volume: 84, Issue: 2, page 211-221
  • ISSN: 0010-437X

How to cite


Mehta, V. B., and Van der Kallen, Wilberd. "A simultaneous Frobenius splitting for closures of conjugacy classes of nilpotent matrices." Compositio Mathematica 84.2 (1992): 211-221. <http://eudml.org/doc/90184>.

author = {Mehta, V. B., Van der Kallen, Wilberd},
journal = {Compositio Mathematica},
keywords = {Frobenius split; nilpotent conjugacy classes; rational singularities},
language = {eng},
number = {2},
pages = {211-221},
publisher = {Kluwer Academic Publishers},
title = {A simultaneous Frobenius splitting for closures of conjugacy classes of nilpotent matrices},
url = {http://eudml.org/doc/90184},
volume = {84},
year = {1992},

AU - Mehta, V. B.
AU - Van der Kallen, Wilberd
TI - A simultaneous Frobenius splitting for closures of conjugacy classes of nilpotent matrices
JO - Compositio Mathematica
PY - 1992
PB - Kluwer Academic Publishers
VL - 84
IS - 2
SP - 211
EP - 221
LA - eng
KW - Frobenius split; nilpotent conjugacy classes; rational singularities
UR - http://eudml.org/doc/90184
ER -


  1. [1] W. Borho und H. Kraft, Über Bahnen und deren Deformationen bei linearen Aktionen reduktiver Gruppen, Comm. Math. Helv.54 (1979), 61-104. Zbl0395.14013MR522032
  2. [2] E. Brieskorn, Singular elements of semi-simple algebraic groups, Actes du Congrès International des Mathématiciens 1970, tome 2, 279-284Gauthiers-Villars, Paris (1971). Zbl0223.22012MR437798
  3. [3] S. Donkin, The normality of closures of conjugacy classes of matrices, Invent. Math.101 (1990), 717-736. Zbl0822.20045MR1062803
  4. [4] M. Gerstenhaber, On nilagebras and linear varieties of nilpotent matrices, III, Annals of Math.70 (1959), 167-205. Zbl0168.28103MR113912
  5. [5] M. Gerstenhaber, On dominance and varieties of commuting matrices, Annals of Math.73 (1961), 324-348. Zbl0168.28201MR132079
  6. [6] P. Griffiths and J. Harris, Principles of algebraic geometry, Wiley & Sons, New York (1978). Zbl0408.14001MR507725
  7. [7] W. Hesselink, The normality of closures of orbits in a Lie algebra, Comm. Math. Helv.54, (1979), 105-110. Zbl0395.14014MR522033
  8. [8] G. Kempf et al., Toroidal embeddings, Lecture Notes in Math. 339, Springer1973. Zbl0271.14017
  9. [9] H. Kraft, Parametrisierung von Konjugationsklassen in sIn, Math. Annalen234 (1978), 209-220. Zbl0362.17005MR491855
  10. [10] H. Kraft and C. Procesi, Closures of conjugacy classes are normal, Inv. Math.53 (1979), 227-247. Zbl0434.14026MR549399
  11. [11] G. Lusztig, Green polynomials and singularities of unipotent classes, Adv. in Math.42 (1981), 169-178. Zbl0473.20029MR641425
  12. [12] O. Mathieu, Formules de caractères pour les algèbres de Kac-Moody générales, Astérisque 159-160 (1988). Zbl0683.17010MR980506
  13. [13] V.B. Mehta and A. Ramanathan, Frobenius splitting and cohomology vanishing for Schubert varieties, Annals of Math.122 (1985), 27-40. Zbl0601.14043MR799251
  14. [14] V.B. Mehta and V. Srinivas, Normality of Schubert varieties, American J. of Math.109 (1987), 987-989. Zbl0651.14030MR910360
  15. [15] V.B. Mehta and W. van der Kallen, On a Grauert-Riemenschneider vanishing theorem for Frobenius split varieties in characteristic p, to appear in Inventiones Math. Zbl0724.14008MR1156382
  16. [16] A. Ramanathan, Equations defining Schubert varieties and Frobenius splitting of diagonals, Publ. Math. IHES65 (1987), 61-90. Zbl0634.14035MR908216

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.