Foliation of phase space for the cubic non-linear Schrödinger equation

D. Bättig; B. Grébert; J. C. Guillot; T. Kappeler

Compositio Mathematica (1993)

  • Volume: 85, Issue: 2, page 163-199
  • ISSN: 0010-437X

How to cite

top

Bättig, D., et al. "Foliation of phase space for the cubic non-linear Schrödinger equation." Compositio Mathematica 85.2 (1993): 163-199. <http://eudml.org/doc/90196>.

@article{Bättig1993,
author = {Bättig, D., Grébert, B., Guillot, J. C., Kappeler, T.},
journal = {Compositio Mathematica},
keywords = {inverse spectral theory; integrable systems; invariant tori; defocusing nonlinear Schrödinger equation},
language = {eng},
number = {2},
pages = {163-199},
publisher = {Kluwer Academic Publishers},
title = {Foliation of phase space for the cubic non-linear Schrödinger equation},
url = {http://eudml.org/doc/90196},
volume = {85},
year = {1993},
}

TY - JOUR
AU - Bättig, D.
AU - Grébert, B.
AU - Guillot, J. C.
AU - Kappeler, T.
TI - Foliation of phase space for the cubic non-linear Schrödinger equation
JO - Compositio Mathematica
PY - 1993
PB - Kluwer Academic Publishers
VL - 85
IS - 2
SP - 163
EP - 199
LA - eng
KW - inverse spectral theory; integrable systems; invariant tori; defocusing nonlinear Schrödinger equation
UR - http://eudml.org/doc/90196
ER -

References

top
  1. [Dui] J.J. Duistermaat.On global action-angle coordinates, CPAM33 (1980), p. 687-706. Zbl0439.58014MR596430
  2. [Gar-Tru 1] J. Garnett and E. Trubowitz.Gaps and bands of one dimensional periodic Schrödinger operators. Comment. Math. Helvetici, 59, p. 258-312 (1984). Zbl0554.34013MR749109
  3. [Gar-Tru 2] J. Garnett and E. Trubowitz.Gaps and bands of one dimensional periodic Schrödinger operators II. Comment. Math. Helvetici, 62, p. 18-37 (1987). Zbl0649.34034MR882963
  4. [Gre] B. Grébert.Problèmes spectraux inverses pour les systèmes AKNS sur la droite réelle. Thèse de I'Université Paris-Nord. Mai 1990. 
  5. [Gre-Gui] B. Grébert and J.C. Guillot.Gaps of one dimensional periodic AKNS systems. Rapport du Centre de Mathématiques Appliquées de l'Ecole Polytechnique no. 215. Juin 1990. To appear in Forum Mathematicum. Zbl0784.34024MR1107987
  6. [Ka] T. Kato.Perturbation theory for linear operators. 2nd ed., Springer-Verlag, 1976. Zbl0148.12601MR407617
  7. [Kp] T. Kappeler.Foliation by the Korteweg-de Vries equation (to appear in Ann. Inst. Fourier). 
  8. [Mck-Tru] H.P. McKean, E. Trubowitz.Hill's operator and hyperelliptic function theory in the presence of infinitely many branch points. C.P.A.M.29, p. 143-226 (1976). Zbl0339.34024MR427731
  9. [Pö-Tru] J. Pöschel and E. Trubowitz.Inverse Spectral Theory. Academic Press (1987). Zbl0623.34001MR894477
  10. [P-S] G. Polya and G. Szegö.Aufgaben und Lehrsätze aus der Analysis. Vol. 2, 3rd ed., Grundlehren, Bd 20, Springer-Verlag, New York, 1964. Zbl0122.29704
  11. [Pre] E. Previato.Hyperelliptic quasi-periodic and solitons solutions of the nonlinear Schrödinger equation. Duke Math. J.52, p. 329-377 (1985). Zbl0578.35086MR792178
  12. [Sim] B. Simon.Trace ideals. Cambridge University Press, 1979. MR541149
  13. [Tru] E. Trubowitz.The inverse problem for periodic potentials. C.P.A.M., 30, p. 321-337 (1977). Zbl0403.34022MR430403

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.