Applications harmoniques, immersions minimales et transformations conformes de la sphère

Ahmad El Soufi

Compositio Mathematica (1993)

  • Volume: 85, Issue: 3, page 281-298
  • ISSN: 0010-437X

How to cite

top

El Soufi, Ahmad. "Applications harmoniques, immersions minimales et transformations conformes de la sphère." Compositio Mathematica 85.3 (1993): 281-298. <http://eudml.org/doc/90200>.

@article{ElSoufi1993,
author = {El Soufi, Ahmad},
journal = {Compositio Mathematica},
keywords = {minimal immersion; index; harmonic map},
language = {fre},
number = {3},
pages = {281-298},
publisher = {Kluwer Academic Publishers},
title = {Applications harmoniques, immersions minimales et transformations conformes de la sphère},
url = {http://eudml.org/doc/90200},
volume = {85},
year = {1993},
}

TY - JOUR
AU - El Soufi, Ahmad
TI - Applications harmoniques, immersions minimales et transformations conformes de la sphère
JO - Compositio Mathematica
PY - 1993
PB - Kluwer Academic Publishers
VL - 85
IS - 3
SP - 281
EP - 298
LA - fre
KW - minimal immersion; index; harmonic map
UR - http://eudml.org/doc/90200
ER -

References

top
  1. [1] Baird, P. and Eells, J.: A conservation law for harmonic maps, Lecture Notes in Math.894 (1981), 1-25. Zbl0485.58008MR655417
  2. [2] Berger, M., Gauduchon, P. and Mazet, E.: Le spectre d'une variété riemannienne, Lecture Notes in Math.194 (1971). Zbl0223.53034
  3. [3] Eells, J. and Lemaire, L.: Selected topics in harmonic maps, C.B.M.S. Regional Conf. Series 50, A.M.S.Providence (1983). Zbl0515.58011MR703510
  4. [4] El Soufi, A. and Ilias, S.: Le volume conforme et ses applications d'après Li et Yau. Séminaire théorie spectrale et géométrie de l'Institut Fourier, exposé no. VII (1984). Zbl0757.53028
  5. [5] El Soufi, A. and Ilias, S.: Immersions minimales, première valeur propre du Laplacien et volume conforme, Math. Ann.275 (1986), 257-267. Zbl0675.53045MR854009
  6. [6] El Soufi, A. and Ilias, S.: Majoration de la seconde valeur propre d'un opérateur de Schrödinger sur une variété compacte et applications, J. Func. Analysis103(2) (1992), 294-316. Zbl0766.58055MR1151550
  7. [7] El Soufi, A. and Ilias, S.: Une inégalité du type "Reilly" pour les sous-variétés de l'espace hyperbolique, Comment. Math. Helv. (1992), Aparaître. Zbl0758.53029
  8. [8] Leung, P.F.: On the stability of harmonic maps, Lecture Notes in Math.949 (1982), 122-129. Zbl0513.58020MR673586
  9. [9] Li, P. and Yau, S.T.: A new conformal invariant and its applications, etc., Invent. Math.69 (1982), 269-291. Zbl0503.53042MR674407
  10. [10] Montiel, S., Ros, A.: Minimal immersions of surfaces by the first eigenfunctions and conformal area, Invent. Math.83 (1986), 153-166. Zbl0584.53026MR813585
  11. [11] Sealey, H.C.: Some properties of harmonic mappings, Thèse de l'Université de Warwick (1980). Zbl0494.58002
  12. [12] Simons, J.: Minimal varieties in Riemannian manifolds, Ann. of Math.88(2) (1968), 62-105. Zbl0181.49702MR233295
  13. [13] Smith, R.T.: The second variation formula for harmonic mappings, Proc. Amer. Math. Soc.47 (1975), 229-236. Zbl0303.58008MR375386
  14. [14] Urbano, F.: Minimal surfaces with low index in the three-dimensional sphere, Proc. Amer. Math. Soc.108 (1990), 989-992. Zbl0691.53049MR1007516

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.