Indice de Morse des applications harmoniques de la sphère

Ahmad El Soufi

Compositio Mathematica (1995)

  • Volume: 95, Issue: 3, page 343-362
  • ISSN: 0010-437X

How to cite


El Soufi, Ahmad. "Indice de Morse des applications harmoniques de la sphère." Compositio Mathematica 95.3 (1995): 343-362. <>.

author = {El Soufi, Ahmad},
journal = {Compositio Mathematica},
keywords = {Morse index; harmonic maps; sphere; instability degree; canonical inversion index; smallest index},
language = {fre},
number = {3},
pages = {343-362},
publisher = {Kluwer Academic Publishers},
title = {Indice de Morse des applications harmoniques de la sphère},
url = {},
volume = {95},
year = {1995},

AU - El Soufi, Ahmad
TI - Indice de Morse des applications harmoniques de la sphère
JO - Compositio Mathematica
PY - 1995
PB - Kluwer Academic Publishers
VL - 95
IS - 3
SP - 343
EP - 362
LA - fre
KW - Morse index; harmonic maps; sphere; instability degree; canonical inversion index; smallest index
UR -
ER -


  1. [1] Bums, D., Burstall, F., de Bartolomeis, P. and Rawnsley, J., Stability of harmonie maps of Kähler manifolds, J. Diff. Geom.30 (1989) 579-594. Zbl0678.53062MR1010173
  2. [2] Eells, J. and Lemaire, L., Selected topics in harmonie maps, C.B.M.S. Regional Conf. Ser.50, A.M.S., Providence (1983). Zbl0515.58011MR703510
  3. [3] Eells, J. and Lemaire, L., A report on harmonie maps, Bull. London Math. Soc.10 (1978) 1-68. Zbl0401.58003MR495450
  4. [4] El Soufi, A., Applications harmoniques, immersions minimales et transformations conformes de la sphère, Compositio Math.85(3) (1993). Zbl0777.58010MR1214448
  5. [5] El Soufi, A. and Ilias S., Immersions minimales, première valeur propre du Laplacien et volume conforme, Math. Ann.275 (1986) 257-267. Zbl0675.53045MR854009
  6. [6] El Soufi, A. and Ilias, S., Une inégalité du type "Reilly" pour les sous-variétés de l'espace hyperbolique, Comment. Math. Helv.67 (1992) 167-181. Zbl0758.53029MR1161279
  7. [7] Ferreira, M.J., Morse indices for certain harmonie maps of surfaces, Bull Soc. Math. Belg.B36 (1984) 131-153. Zbl0561.58010MR777193
  8. [8] Gallot, S. and Meyer, D., Opérateur de courbure et Laplacien des formes différentielles d'une variété riemannienne, J. Math. Pures Appl.54 (1975) 259-289. Zbl0316.53036MR454884
  9. [9] Iwasaki, I. and Katase, K., On the spectra of Laplace operator on Λ*(Sn), Proc. Japan. Acad.55, A (1979) 141-145. Zbl0442.58029
  10. [10] Lawson, H.B. and Simons, J., On stable currents and their application to global problems in real and complex geometry, Ann. of Math.98(2) (1973) 427-450. Zbl0283.53049MR324529
  11. [11] Lichnerowicz, A., Applications harmoniques et variétés Kählériennes, Sympos. Math.3 (1970) 341-402. Zbl0193.50101MR262993
  12. [12] Ohnita, Y. and Udagawa, S., Stability of harmonie maps from Riemann surfaces to compact Hermitian symmetric spaces, Tokyo J. Math.10 (1987) 385-390. Zbl0646.58019MR926250
  13. [13] Ramanathan, J., A remark on the energy of harmonie maps between spheres, Roky Mountain J. Math.16 (1986) 783-790. Zbl0611.58022MR871035
  14. [14] Simons, J., Minimal varieties in Riemannian manifolds, Ann. of Math.88 (1968) 62-105. Zbl0181.49702MR233295
  15. [15] Siu, Y.T., The complex analyticity of harmonie maps and the strong rigidity of compact Kähler manifolds, Ann. of Math.112(2) (1980) 73-111. Zbl0517.53058MR584075
  16. [16] Siu, Y.T., Yau, S.T., Compact Kähler manifolds of positive bisectional curvature, Invent. Math.59 (1980) 189-204. Zbl0442.53056MR577360
  17. [17] Smith, R.T., The second variation formula for harmonie mappings, Proc. Am. Math. Soc.47 (1975) 229-236. Zbl0303.58008MR375386
  18. [18] Urakawa, H., Stability of harmonie maps and eigenvalues of the Laplacian, Trans. Amer. Math. Soc.301 (1987) 557-589. Zbl0621.58010MR882704
  19. [19] Xin, Y.L., Some results on stable harmonie maps, Duke Math. J.47 (1980) 609-613. Zbl0513.58019MR587168

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.