Morse indices of Yang-Mills connections over the unit sphere

Shin Nayatani; Hajime Urakawa

Compositio Mathematica (1995)

  • Volume: 98, Issue: 2, page 177-192
  • ISSN: 0010-437X

How to cite

top

Nayatani, Shin, and Urakawa, Hajime. "Morse indices of Yang-Mills connections over the unit sphere." Compositio Mathematica 98.2 (1995): 177-192. <http://eudml.org/doc/90400>.

@article{Nayatani1995,
author = {Nayatani, Shin, Urakawa, Hajime},
journal = {Compositio Mathematica},
keywords = {Yang-Mills connection; weakly stable; Morse index},
language = {eng},
number = {2},
pages = {177-192},
publisher = {Kluwer Academic Publishers},
title = {Morse indices of Yang-Mills connections over the unit sphere},
url = {http://eudml.org/doc/90400},
volume = {98},
year = {1995},
}

TY - JOUR
AU - Nayatani, Shin
AU - Urakawa, Hajime
TI - Morse indices of Yang-Mills connections over the unit sphere
JO - Compositio Mathematica
PY - 1995
PB - Kluwer Academic Publishers
VL - 98
IS - 2
SP - 177
EP - 192
LA - eng
KW - Yang-Mills connection; weakly stable; Morse index
UR - http://eudml.org/doc/90400
ER -

References

top
  1. [BL] J.P. Bourguignon and H.B. Lawson, Stability and isolation phenomena for Yang-Mills fields, Commun. Math. Phys.79 (1981), 189-230. Zbl0475.53060MR612248
  2. [E1] A. El Soufi, Applications harmoniques, immersions minimales et transformations conformes de la sphère, Compositio Mathematica85 (1993), 281-298. Zbl0777.58010MR1214448
  3. [E2] A. El Soufi, Indice de Morse des applications harmoniques de la sphere, to appear in Compositio Mathematica. MR1318092
  4. [EI] A. El Soufi and S. Ilias, Une inégalité du type "Reilly" pour les sous-variétés de l'espace hyperbolique, Comment. Math. Helv.67 (1992), 167-181. Zbl0758.53029MR1161279
  5. [KN] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, vol. I, John Wiley and Sons, New York, 1963. Zbl0119.37502MR1393940
  6. [KOT] S. Kobayashi, Y. Ohnita and M. Takeuchi, On instability of Yang-Mills connections, Math. Zeit.193 (1986), 165-189. Zbl0634.53022MR856147
  7. [L] H.T. Laquer, Stability properties of the Yang-Mills functional near the canonical connection, Michigan Math. Jour.31 (1984), 139-159. Zbl0647.53022MR752251
  8. [O] M. Obata, Conformal transformations of Riemannian manifolds, Jour. Differential Geom.4 (1970), 311-333. Zbl0205.52003MR267485
  9. [S] R.T. Smith, The second variation formula for harmonic mappings, Proc. Amer. Math. Soc.47 (1975), 229-236. Zbl0303.58008MR375386
  10. [U] H. Urakawa, Stability of harmonic maps and eigenvalues of Laplacian, Trans. Amer. Math. Soc.301 (1987), 557-589. Zbl0621.58010MR882704
  11. [X] Y.L. Xin, Some remarks on stable harmonic maps, Duke Math. Jour.47 (1980), 609-613. Zbl0513.58019MR587168

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.