Asymptotic estimates for rational points of bounded height on flag varieties

Jeffrey Lin Thunder

Compositio Mathematica (1993)

  • Volume: 88, Issue: 2, page 155-186
  • ISSN: 0010-437X

How to cite

top

Thunder, Jeffrey Lin. "Asymptotic estimates for rational points of bounded height on flag varieties." Compositio Mathematica 88.2 (1993): 155-186. <http://eudml.org/doc/90243>.

@article{Thunder1993,
author = {Thunder, Jeffrey Lin},
journal = {Compositio Mathematica},
keywords = {rational points; projective variety; flag variety; height; asymptotic formula},
language = {eng},
number = {2},
pages = {155-186},
publisher = {Kluwer Academic Publishers},
title = {Asymptotic estimates for rational points of bounded height on flag varieties},
url = {http://eudml.org/doc/90243},
volume = {88},
year = {1993},
}

TY - JOUR
AU - Thunder, Jeffrey Lin
TI - Asymptotic estimates for rational points of bounded height on flag varieties
JO - Compositio Mathematica
PY - 1993
PB - Kluwer Academic Publishers
VL - 88
IS - 2
SP - 155
EP - 186
LA - eng
KW - rational points; projective variety; flag variety; height; asymptotic formula
UR - http://eudml.org/doc/90243
ER -

References

top
  1. [BV] E. Bombieri and J. Vaaler, On Siegel's lemma, Inv. Math.73 (1983), 11-32. Zbl0533.10030MR707346
  2. [C] J. Cassels, An Introduction to the Geometry of Numbers, Springer Grundlehren 99, Berlin, 1959. Zbl0086.26203
  3. [CS] G. Cornell and J. Silverman (eds.), Arithmetric Geometry, Springer-Verlag, New York, 1986. Zbl0596.00007
  4. [HP] W. Hodge and D. Pedoe, Methods of Algebraic Geometry, Cambridge Univ. Press, Cambridge, 1947. Zbl0796.14001MR28055
  5. [FMT] J. Franke, Y. Manin, and Y. Tschinkel, Rational points of bounded height on Fano varieties, Inv. Math.95 (1989), 421-435. Zbl0674.14012MR974910
  6. [L] S. Lang, Algebraic Number Theory, Springer-Verlag GTM 110, Berlin, 1986. Zbl0601.12001MR1282723
  7. [S] S. Schanuel, Heights in number fields, Bull. Soc. Math. France107 (1979), 433-449. Zbl0428.12009MR557080
  8. [Sch] W. Schmidt, On heights of algebraic subspaces and diophantine approximation, Ann. of Math.85 (1967), 430-472. Zbl0152.03602MR213301
  9. [Si] W. Sierpinski, O pewnem zagadnieniu z rachunku funkcyj asymptotycznych, Prace Mat.-Fiz., 17 (1906), 77-118. 
  10. [T1] J. Thunder, An asymptotic estimate for heights of algebraic subspaces, Trans. Amer. Math. Soc.331 (1992), 395-424. Zbl0773.11041MR1072102
  11. [T2] —, An Asymptotic Estimate for heights of Algebraic Subspaces, Ph.D. Thesis, Univ. of Colorado, Boulder, 1990. 
  12. [T3] —, The Number of Solutions of Bounded Height to a System of Linear Equations, Journal of Number Theory43, No. 2 (1993), 228-250. Zbl0773.11022

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.