Problems and results on the distribution of algebraic points on algebraic varieties

Enrico Bombieri[1]

  • [1] Institute for Advanced Study 1 Einstein Drive Princeton, NJ 08540, USA

Journal de Théorie des Nombres de Bordeaux (2009)

  • Volume: 21, Issue: 1, page 41-57
  • ISSN: 1246-7405

Abstract

top
This is a survey paper on the distribution of algebraic points on algebraic varieties.

How to cite

top

Bombieri, Enrico. "Problems and results on the distribution of algebraic points on algebraic varieties." Journal de Théorie des Nombres de Bordeaux 21.1 (2009): 41-57. <http://eudml.org/doc/10875>.

@article{Bombieri2009,
abstract = {This is a survey paper on the distribution of algebraic points on algebraic varieties.},
affiliation = {Institute for Advanced Study 1 Einstein Drive Princeton, NJ 08540, USA},
author = {Bombieri, Enrico},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {algebraic points; height; Weil absolute logarithmic height; Mahler's measure; circle method; accumulator; Fano varieties; K3 varieties; conjecture of Batyrev and Manin; Neron–Severi group; cubic threefold; Arakelov height; Schanuel's Theorem; conjecture of Franke, Manin and Tschinkel; Northcott property; small points; Lehmer conjecture; Bogomolov property},
language = {eng},
number = {1},
pages = {41-57},
publisher = {Université Bordeaux 1},
title = {Problems and results on the distribution of algebraic points on algebraic varieties},
url = {http://eudml.org/doc/10875},
volume = {21},
year = {2009},
}

TY - JOUR
AU - Bombieri, Enrico
TI - Problems and results on the distribution of algebraic points on algebraic varieties
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2009
PB - Université Bordeaux 1
VL - 21
IS - 1
SP - 41
EP - 57
AB - This is a survey paper on the distribution of algebraic points on algebraic varieties.
LA - eng
KW - algebraic points; height; Weil absolute logarithmic height; Mahler's measure; circle method; accumulator; Fano varieties; K3 varieties; conjecture of Batyrev and Manin; Neron–Severi group; cubic threefold; Arakelov height; Schanuel's Theorem; conjecture of Franke, Manin and Tschinkel; Northcott property; small points; Lehmer conjecture; Bogomolov property
UR - http://eudml.org/doc/10875
ER -

References

top
  1. F. Amoroso, S. David, Le problème de Lehmer en dimension supérieure. J. reine angew. Math. 513 (1999), 145–179. Zbl1011.11045MR1713323
  2. F. Amoroso, R. Dvornicich, A lower bound for the height in an abelian extension. J. Number Th. 80 (2000), 260–272. Zbl0973.11092MR1740514
  3. V.V. Batyrev, Yu.I. Manin, Sur le nombre des points rationnels de hauteur bornée des variétés algébriques. Math. Annalen 286 (1980), 27–43. Zbl0679.14008MR1032922
  4. Yu.F. Bilu, Limit distribution of small points on algebraic tori. Duke Math. J. 89 (1997), 465–476. Zbl0918.11035MR1470340
  5. E. Bombieri, W. Gubler, Heights in Diophantine Geometry, Cambridge Univ. Press 2006, xvi+652pp. Zbl1115.11034MR2216774
  6. E. Bombieri, H.P.F. Swinnerton-Dyer, On the local zeta function of a cubic threefold. Ann. Scuola Norm. Super. Pisa Sci. Fis. Mat. (3) 21 (1967), 1–29. Zbl0153.50501MR212019
  7. E. Bombieri, U. Zannier, A note on heights in infinite extensions of . Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 12 (2001), 5–14. Zbl1072.11077MR1898444
  8. C. Christensen, W. Gubler, Der relative Satz von Schanuel. Manuscripta Math. 126 (2008), 505–525. Zbl1155.11034MR2425438
  9. H. Clemens, P.A. Griffiths, The intermediate Jacobian of the cubic threefold. Ann. of Math. (2) 95 (1972), 281–356. Zbl0214.48302MR302652
  10. S. David, P. Philippon, Minorations des hauteurs normalisées des sous-variétés des tores. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 28 (1999), 489–543. Errata: ibid. (4) 29 (2000), 729–731. Zbl1002.11055MR1736526
  11. R. de la Bretèche, Points rationnels sur la cubique de Segre. Proc. London Math. Soc. (3) 95 (2007), 69–155. Zbl1126.14025MR2329549
  12. E. Dobrowolski, On a question of Lehmer and the number of irreducible factors of a polynomial. Acta Arith. XXXIX (1979), 391–401. Zbl0416.12001MR543210
  13. G. Faltings, Diophantine approximation on abelian varieties. Ann. of Math. (2) 133 (1991), 549–576. Zbl0734.14007MR1109353
  14. K.B. Ford, New estimates for mean values of Weyl sums. Internat. Math. Res. Notices (1995), 155–171. Zbl0821.11050MR1321702
  15. J. Franke, Yu.I. Manin, Y. Tschinkel, Rational points of bounded height on Fano varieties. Inventiones Math. 95 (1989), 421–435. Erratum:“Rational points of bounded height on Fano varieties”. ibid. 105 (1990), 463. Zbl0674.14012MR974910
  16. X. Gao, On Northcott’s theorem. Ph. D. Thesis, University of Colorado (1995). 
  17. C. Hooley, On some topics connected with Waring’s problem. J. Reine Angew. Math. 369 (1986), 110–153. Zbl0589.10052MR850631
  18. R. Louboutin, Sur la mesure de Mahler d’un nombre algébrique. C. R. Acad. Sci. Paris Sér. I Math. 296 (1983), 707–708. Zbl0557.12001MR706663
  19. D. Masser, J.D. Vaaler, Counting algebraic numbers with large height. Trans. Amer. Math. Soc. 359 (2007), 427–445. Zbl1215.11100MR2247898
  20. E.Peyre, Points de hauteur bornée et géométrie des variétés (d’après Y. Manin et al.). Séminaire Bourbaki, Vol. 2000/2001, 323–344. Zbl1039.11045MR1975184
  21. E. Peyre, Hauteurs et measure de Tamagawa sur les variétés de Fano. Duke Math. J. 79 (1995), 101–218. Zbl0901.14025MR1340296
  22. P. Salberger, Tamagawa measures on universal torsors and points of bounded height on Fano varieties. Astérisque 251 (1998), 91–258. Zbl0959.14007MR1679841
  23. S.H. Schanuel, Heights in number fields. Bull. Soc. Math. France 107 (1979), 433–449. Zbl0428.12009MR557080
  24. A. Schinzel, On the product of conjugates outside the unit circle of an algebraic integer. Acta Arith. XXIV (1973), 385–399. Addendum ibid. XXVI (1974/75), 329–331. Zbl0275.12004MR360515
  25. W.M. Schmidt, Asymptotic formulae for point lattices of bounded determinant and subspaces of bounded height. Duke Math. J. 35 (1968), 327–339. Zbl0172.06304MR224562
  26. W.M. Schmidt, Northcott’s theorem on heights II. The quadratic case. Acta Arith. LXX (1995), 343–375. Zbl0784.11055MR1330740
  27. C.J. Smyth, On the product of conjugates outside the unit circle of an algebraic integer. Bull. London Math. Soc. 3 (1971), 169–175. Zbl0235.12003MR289451
  28. C. Smyth, The Mahler measure of algebraic numbers: A survey. In Number Theory & Polynomials conference proceedings, London Math. Soc., Lecture Note Ser. 352, Cambridge Univ. Press, Cambridge 2008, 322–349. Zbl1334.11081MR2428530
  29. C.J. Smyth, On the measure of totally real algebraic numbers, I. J. Austral. Math. Soc. Ser. A 30 (1980/81), 137–149; II, Math. of Comp. 37 (1981), 205–208. Zbl0457.12001
  30. L. Szpiro, E. Ullmo, S. Zhang, Equirépartition des petits points. Inventiones Math. 127 (1997), 337–347. Zbl0991.11035MR1427622
  31. J.L.Thunder, Asymptotic estimates for the number of rational points of bounded height on flag varieties. Compos. Math. 88 (1993), 155–186. Zbl0806.11030MR1237919
  32. R.C. Vaughan, T.D. Wooley, On a certain nonary cubic form and related equations. Duke Math. J. 80 (1995), 669–735. Zbl0847.11052MR1370112
  33. S. Zhang, Positive line bundles on arithmetic surfaces. Ann. of Math. (2) 136 (1995), 569–587. Zbl0788.14017MR1189866

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.