Kloosterman sums and monodromy of a p -adic hypergeometric equation

Richard Crew

Compositio Mathematica (1994)

  • Volume: 91, Issue: 1, page 1-36
  • ISSN: 0010-437X

How to cite

top

Crew, Richard. "Kloosterman sums and monodromy of a $p$-adic hypergeometric equation." Compositio Mathematica 91.1 (1994): 1-36. <http://eudml.org/doc/90279>.

@article{Crew1994,
author = {Crew, Richard},
journal = {Compositio Mathematica},
keywords = {overconvergent crystals; characteristic ; differential Galois-groups; Kloosterman sums; Frobenius-elements},
language = {eng},
number = {1},
pages = {1-36},
publisher = {Kluwer Academic Publishers},
title = {Kloosterman sums and monodromy of a $p$-adic hypergeometric equation},
url = {http://eudml.org/doc/90279},
volume = {91},
year = {1994},
}

TY - JOUR
AU - Crew, Richard
TI - Kloosterman sums and monodromy of a $p$-adic hypergeometric equation
JO - Compositio Mathematica
PY - 1994
PB - Kluwer Academic Publishers
VL - 91
IS - 1
SP - 1
EP - 36
LA - eng
KW - overconvergent crystals; characteristic ; differential Galois-groups; Kloosterman sums; Frobenius-elements
UR - http://eudml.org/doc/90279
ER -

References

top
  1. [1] P. Berthelot, Géometrie rigide et cohomologie des variétés algébriques de caracteristique p, Journés d'analyse p-adique (Luminy1982), Mémoire de la S.M.F. No. 23, suppl. au Bull. S.M.F.114 (1986) fasc.2, 7-32. Zbl0606.14017MR865810
  2. [2] P. Berthelot, Cohomologie rigide et théorie de Dwork: le cas des sommes exponentielles, in Astérisque119-120 (1984) 17-49. Zbl0577.14013MR773087
  3. [3] P. Berthelot, Cohomologie rigide et cohomologie rigide á support propre, to appear in Astérisque. Zbl0515.14015MR773087
  4. [4] A. Borel, Linear algebraic groups, 2nd ed., Springer-Verlag (1991). Zbl0726.20030MR1102012
  5. [5] S. Bosch, B. Dwork, and Ph. Robba, A rigid analytic version of M. Artin's theorem on analytic equations, Math. Ann.255 (1981) 395-404. Zbl0462.14002MR615859
  6. [6] R. Crew, F-isocrystals and p-adic representations, in Algebraic Geometry-Bowdoin 1985, Proc. Symp. Pure Math.46(2) (1987) 111-138. Zbl0639.14011MR927977
  7. [7] R. Crew, F-isocrystals and their monodromy groups, Ann. Sc. Ec. Norm. Sup.4e sér. 25 (1992) 429-464. Zbl0783.14008MR1186910
  8. [8] P. Deligne, La conjecture de Weil II, Publ. Math. IHES52 (1980) 137-352. Zbl0456.14014MR601520
  9. [9] P. Deligne and J. Milne, Tannakian Categories, in Lecture Notes in Math. 900, Springer-Verlag (1982). Zbl0477.14004
  10. [10] B. Dwork, Bessel functions as p-adic functions of the argument, Duke Math. J.41 (1974) 711-738. Zbl0302.14008MR387281
  11. [11] S. Helgason, Differential geometry and symmetric spaces, Academic Press (1962). Zbl0111.18101MR145455
  12. [12] N. Katz, Travauxs de Dwork, Séminaire Bourbaki1971 -2, exposé 409, in Lecture Notes in Math. 317, Springer-Verlag (1973), pp. 167-200. Zbl0259.14007MR498577
  13. [13] N. Katz, p-adic properties of modular schemes and modular forms, in Lecture Notes in Math. 350, Springer-Verlag (1973), 69-190. Zbl0271.10033MR447119
  14. [14] N. Katz, Slope filtration of F-crystals, in Journées de géométrie algébrique de Rennes I, Astérisque63 (1979) 113-163. Zbl0426.14007MR563463
  15. [15] N. Katz, On the calculation of some differential galois groups, Inv. Math.87 (1987) 13-61. Zbl0609.12025MR862711
  16. [16] N. Katz, Gauss sums, Kloosterman sums, and monodromy groups, Annals of Math. Studies116, Princeton Univ. Press (1988). Zbl0675.14004MR955052
  17. [17] N. Katz, Exponential sums and differential equations, Annals of Math. Studies124, Princeton Univ. Press (1990). Zbl0731.14008MR1081536
  18. [18] M. Larsen and R. Pink, On l-independence of algebraic monodromy groups in compatible systems of representations, preprint. Zbl0778.11036
  19. [19] A. Ogus, F-isocrystals and De Rham cohomology II - Convergent isocrystals, Duke J. Math.51 (1984) 765-850. Zbl0584.14008MR771383
  20. [20] N. Saavedra R., Categories Tannakiennes, Lecture Notes in Math. 265, Springer-Verlag (1972). Zbl0241.14008MR338002
  21. [21] J.-P. Serre, Abelian l-adic representations and elliptic curves, W. A. Benjamin (1968). Zbl0186.25701MR263823
  22. [22] S. Sperber, p-adic hypergeometric functions and their cohomology, Duke Math. J.44 (1977) 535-589. Zbl0408.12025MR476750
  23. [23] S. Sperber, Congruence properties of the hyperkloosterman sum, Com. Math.40 (1980) 3-33. Zbl0444.12014MR558257
  24. [24] S. Sperber, Newton polygons for general hyperkloosterman sums, in Cohomologie p-adique, Astérisque119-120 (1984) 267-330. Zbl0582.14005MR773095
  25. [LIE] N. Bourbaki, Groupes et algèbres de Lie, Masson, Paris (1982). Zbl0505.22006
  26. [SGA 41/2] P. Deligne et al., Cohomologie étale, Lecture Notes in Math. 569, Springer-Verlag (1977). Zbl0345.00010MR463174

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.