Algebraic independence by Mahler’s method and S -unit equations

Kumiko Nishioka

Compositio Mathematica (1994)

  • Volume: 92, Issue: 1, page 87-110
  • ISSN: 0010-437X

How to cite

top

Nishioka, Kumiko. "Algebraic independence by Mahler’s method and $S$-unit equations." Compositio Mathematica 92.1 (1994): 87-110. <http://eudml.org/doc/90300>.

@article{Nishioka1994,
author = {Nishioka, Kumiko},
journal = {Compositio Mathematica},
keywords = {values at algebraic points; algebraic independence; Mahler functions; Mahler functions of several variables; -unit equation},
language = {eng},
number = {1},
pages = {87-110},
publisher = {Kluwer Academic Publishers},
title = {Algebraic independence by Mahler’s method and $S$-unit equations},
url = {http://eudml.org/doc/90300},
volume = {92},
year = {1994},
}

TY - JOUR
AU - Nishioka, Kumiko
TI - Algebraic independence by Mahler’s method and $S$-unit equations
JO - Compositio Mathematica
PY - 1994
PB - Kluwer Academic Publishers
VL - 92
IS - 1
SP - 87
EP - 110
LA - eng
KW - values at algebraic points; algebraic independence; Mahler functions; Mahler functions of several variables; -unit equation
UR - http://eudml.org/doc/90300
ER -

References

top
  1. [1] M. Amou: Algebraic independence of the values of certain functions at a transcendental number. Acta Arith.59 (1991) 71-82. Zbl0735.11031MR1133238
  2. [2] P.-G. Becker: Effective measures for algebraic independence of the values of Mahler type functions. To appear in Acta Arith. Zbl0735.11030MR1121085
  3. [3] J.-H. Evertse: On sums of S-units and linear recurrences, Compositio Math.53 (1984)225 -244. Zbl0547.10008MR766298
  4. [4] F.R. Gantmacher: Applications of the Theory of Matrices. New York, Wiley, 1959. Zbl0085.01001
  5. [5] K.K. Kubota: On the algebraic independence of holomorphic solutions of certain functional equations and their values. Math. Ann.227 (1977) 9-50. Zbl0359.10030MR498423
  6. [6] J.H. Loxton and A.J. van der Poorten: Arithmetic properties of certain functions in several variables. J. Number Theory9 (1977) 87-106. Zbl0339.10026MR506054
  7. [7] J.H. Loxton and A.J. van der Poorten: Arithmetic properties of certain functions in several variables. II. J. Austral. Math. Soc. Ser.A24 (1977) 393-408. Zbl0339.10027MR506055
  8. [8] J.H. Loxton and A.J. van der Poorten: A class of hypertranscendental functions. Aequationes Math.16 (1977) 93-106. Zbl0384.10014MR476659
  9. [9] J.H. Loxton and A.J. van der Poorten: Algebraic independence properties of the Fredholm series. J. Austral. Math. Soc. Ser.A26 (1978) 31-45. Zbl0392.10034MR510583
  10. [10] J.H. Loxton and A.J. van der Poorten: Arithmetic properties of automata; regular sequences. J. reine angew. Math.392 (1988) 57-69. Zbl0656.10033MR965057
  11. [11] K. Mahler: Arithmetische Eigenschaften der Lösungen einer Klasse von Funktionalgleichungen. Math. Ann.101 (1929) 342-366. Zbl55.0115.01MR1512537JFM55.0115.01
  12. [12] K. Mahler: Über das Verschwinden von Potenzreihen mehrerer Veränderlichen in speziellen Punktfolgen. Math. Ann.103 (1930) 573-587. Zbl56.0185.03MR1512638JFM56.0185.03
  13. [13] K. Mahler: Arithmetische Eigenschaften einer Klasse transzendental-transzendenter Funktionen. Math. Z.32 (1930) 545-585. Zbl56.0186.01MR1545184JFM56.0186.01
  14. [14] D.W. Masser: A vanishing theorem for power series. Invent. Math.67 (1982) 275-296. Zbl0481.10034MR665158
  15. [15] Yu. V. Nesterenko: On a measure of the algebraic independence of the values of certain functions. Mat. Sb.128 (170) (1985); English transl. in Math. USSR Sb.56 (1987) 545-567. Zbl0608.10034MR820402
  16. [16] K. Nishioka: New approach in Mahler's method. J. reine angew. Math.407 (1990) 202-219. Zbl0694.10035MR1048535
  17. [17] K. Nishioka: On an estimate for the orders of zeros of Mahler type functions. Acta Arith.56 (1990) 249-256. Zbl0719.11041MR1083004
  18. [18] K. Nishioka: Algebraic independence measures of the values of Mahler functions. J. reine angew. Math.420 (1991) 203-214. Zbl0736.11034MR1124571
  19. [19] K. Nishioka, Y. Shiokawa and J. Tamura: Arithmetic properties of a certain power series. J. Number Theory42 (1992) 61-87. Zbl0770.11039MR1176421

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.