On gaps in Rényi -expansions of unity for an algebraic number
- [1] Université de Grenoble I Institut Fourier UMR CNRS 5582 BP 74 - Domaine Universitaire, 38402 Saint-Martin d’Hères (France)
Annales de l’institut Fourier (2006)
- Volume: 56, Issue: 7, page 2565-2579
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topVerger-Gaugry, Jean-Louis. "On gaps in Rényi $\beta $-expansions of unity for $\beta > 1$ an algebraic number." Annales de l’institut Fourier 56.7 (2006): 2565-2579. <http://eudml.org/doc/10214>.
@article{Verger2006,
abstract = {Let $\beta > 1$ be an algebraic number. We study the strings of zeros (“gaps”) in the Rényi $\beta $-expansion $d_\{\beta \}(1)$ of unity which controls the set $\mathbb\{Z\}_\{\beta \}$ of $\beta $-integers. Using a version of Liouville’s inequality which extends Mahler’s and Güting’s approximation theorems, the strings of zeros in $d_\{\beta \}(1)$ are shown to exhibit a “gappiness” asymptotically bounded above by $\log (\{\rm M\}(\beta ))/\log (\beta )$, where $\{\rm M\}(\beta )$ is the Mahler measure of $\beta $. The proof of this result provides in a natural way a new classification of algebraic numbers $> 1$ with classes called Q$_i^\{(j)\}$ which we compare to Bertrand-Mathis’s classification with classes C$_1$ to C$_5$ (reported in an article by Blanchard). This new classification relies on the maximal asymptotic “quotient of the gap” value of the “gappy” power series associated with $d_\{\beta \}(1)$. As a corollary, all Salem numbers are in the class C$_1 \cup \,$Q$_\{0\}^\{(1)\} \cup $ Q$_\{0\}^\{(2)\} \cup $ Q$_\{0\}^\{(3)\}$ ; this result is also directly proved using a recent generalization of the Thue-Siegel-Roth Theorem given by Corvaja.},
affiliation = {Université de Grenoble I Institut Fourier UMR CNRS 5582 BP 74 - Domaine Universitaire, 38402 Saint-Martin d’Hères (France)},
author = {Verger-Gaugry, Jean-Louis},
journal = {Annales de l’institut Fourier},
keywords = {Beta-integer; beta-numeration; PV number; Salem number; Perron number; Mahler measure; Diophantine approximation; Mahler’s series; mathematical quasicrystal; beta expansions; Pisot number},
language = {eng},
number = {7},
pages = {2565-2579},
publisher = {Association des Annales de l’institut Fourier},
title = {On gaps in Rényi $\beta $-expansions of unity for $\beta > 1$ an algebraic number},
url = {http://eudml.org/doc/10214},
volume = {56},
year = {2006},
}
TY - JOUR
AU - Verger-Gaugry, Jean-Louis
TI - On gaps in Rényi $\beta $-expansions of unity for $\beta > 1$ an algebraic number
JO - Annales de l’institut Fourier
PY - 2006
PB - Association des Annales de l’institut Fourier
VL - 56
IS - 7
SP - 2565
EP - 2579
AB - Let $\beta > 1$ be an algebraic number. We study the strings of zeros (“gaps”) in the Rényi $\beta $-expansion $d_{\beta }(1)$ of unity which controls the set $\mathbb{Z}_{\beta }$ of $\beta $-integers. Using a version of Liouville’s inequality which extends Mahler’s and Güting’s approximation theorems, the strings of zeros in $d_{\beta }(1)$ are shown to exhibit a “gappiness” asymptotically bounded above by $\log ({\rm M}(\beta ))/\log (\beta )$, where ${\rm M}(\beta )$ is the Mahler measure of $\beta $. The proof of this result provides in a natural way a new classification of algebraic numbers $> 1$ with classes called Q$_i^{(j)}$ which we compare to Bertrand-Mathis’s classification with classes C$_1$ to C$_5$ (reported in an article by Blanchard). This new classification relies on the maximal asymptotic “quotient of the gap” value of the “gappy” power series associated with $d_{\beta }(1)$. As a corollary, all Salem numbers are in the class C$_1 \cup \,$Q$_{0}^{(1)} \cup $ Q$_{0}^{(2)} \cup $ Q$_{0}^{(3)}$ ; this result is also directly proved using a recent generalization of the Thue-Siegel-Roth Theorem given by Corvaja.
LA - eng
KW - Beta-integer; beta-numeration; PV number; Salem number; Perron number; Mahler measure; Diophantine approximation; Mahler’s series; mathematical quasicrystal; beta expansions; Pisot number
UR - http://eudml.org/doc/10214
ER -
References
top- B. Adamczewski, Transcendance “à la Liouville” de certains nombres réels, C. R. Acad. Sci. Paris 338 (2004), 511-514 Zbl1046.11051MR2057021
- J.-P. Allouche, M. Cosnard, The Komornik-Loreti constant is tanscendental, Amer. Math. Monthly 107 (2000), 448-449 Zbl0997.11052MR1763399
- J.-P. Allouche, J. Shallit, The ubiquitous Prouhet-Thue-Morse sequence, Sequences and Their Applications (1999), 1-16, Springer-Verlag Zbl1005.11005MR1843077
- M.-J. Bertin, A. Decomps-Guilloux, M. Grandet-Hugot, M. Pathiaux-Delefosse, J.-P. Schreiber, Pisot and Salem Numbers, (1992), Birkhaüser Zbl0772.11041MR1187044
- A. Bertrand-Mathis, Questions diverses relatives aux systèmes codés : applications au -shift
- A. Bertrand-Mathis, Développements en base Pisot et répartition modulo , C. R. Acad. Sci. Paris 285 (1977), 419-421 Zbl0362.10040MR447134
- A. Bertrand-Mathis, Développements en base et répartition modulo de la suite , Bull. Soc. Math. Fr. 114 (1986), 271-324 Zbl0628.58024MR878240
- F. Blanchard, -expansions and Symbolic Dynamics, Theoret. Comput. Sci. 65 (1989), 131-141 Zbl0682.68081MR1020481
- D. Boyd, Salem numbers of degree four have periodic expansions, Théorie des Nombres - Number Theory (1989), 57-64, Walter de Gruyter & Co., Eds. J.M. de Koninck and C. Levesque, Berlin and New York Zbl0685.12004MR1024551
- D. Boyd, On beta expansions for Pisot numbers, Math. Comp. 65 (1996), 841-860 Zbl0855.11039MR1325863
- D. Boyd, On the beta expansion for Salem numbers of degree 6, Math. Comp. 65 (1996), 861-875 Zbl0848.11048MR1333306
- D. Boyd, The beta expansions for Salem numbers, Organic Mathematics (1997), 117-131, A.M.S., Providence, RI Zbl1053.11536MR1483916
- C. Burdik, Ch. Frougny, J.-P. Gazeau, R. Krejcar, Beta-integers as natural counting systems for quasicrystals, J. Phys. A: Math. Gen. 31 (1998), 6449-6472 Zbl0941.52019MR1644115
- D. P. Chi, D. Kwon, Sturmian words, -shifts, and transcendence, Theoret. Comput. Sci. 321 (2004), 395-404 Zbl1068.68112MR2076154
- P. Corvaja, Autour du Théorème de Roth, Monath. Math. 124 (1997), 147-175 Zbl0883.11033MR1462860
- P. Corvaja, U. Zannier, Some New Applications of the Subspace Theorem, Compositio Mathematica 131 (2002), 319-340 Zbl1010.11038MR1905026
- M. Denker, C. Grillenberger, K. Sigmund, Ergodic Theory on compact spaces, (1976), Springer Lecture Notes in Math. 527 Zbl0328.28008MR457675
- A. Elkharrat, C. Frougny, J.-P. Gazeau, J.-L. Verger-Gaugry, Symmetry groups for beta-lattices, Theor. Comp. Sci. 319 (2004), 281-305 Zbl1068.52028MR2074957
- S. Fabre, Substitutions et -systèmes de numération, Theoret. Comput. Sci. 137 (1995), 219-236 Zbl0872.11017MR1311222
- L. Flatto, J.C. Lagarias, B. Poonen, The zeta function of the beta transformation, Ergod. Th. and Dynam. Sys. 14 (1994), 237-266 Zbl0843.58106MR1279470
- C. Frougny, J.-P. Gazeau, R. Krejcar, Additive and multiplicative properties of point sets based on beta-integers, Theoret. Comput. Sci. 303 (2003), 491-516 Zbl1036.11034MR1990778
- C. Frougny, B. Solomyak, Finite beta-expansions, Ergod. Theor. Dynam. Sys. 12 (1992), 713-723 Zbl0814.68065MR1200339
- Ch. Frougny, Number Representation and Finite Automata, London Math. Soc. Lecture Note Ser. 279 (2000), 207-228 Zbl0976.11003MR1776760
- Ch. Frougny, Algebraic Combinatorics on Words, (2003), Cambridge University Press MR1905123
- J.-P. Gazeau, Pisot-Cyclotomic Integers for Quasilattices, The Mathematics of Long-Range Aperiodic Order (1997), 175-198, Ed. R. V. Moody, Kluwer Academic Publisher, Dordrecht Zbl0887.11043MR1460024
- J.-P. Gazeau, J.-L. Verger-Gaugry, Geometric study of the set of -integers for a Perron number and mathematical quasicrystals, J. Th. Nombres Bordeaux 16 (2004), 1-25 Zbl1075.11007MR2145576
- J.-P. Gazeau, J.-L. Verger-Gaugry, Diffraction spectra of weighted Delone sets on -lattices with a quadratic unitary Pisot number, (2006) Zbl1119.52015
- R. Güting, Approximation of algebraic numbers by algebraic numbers, Michigan Math. J. 8 (1961), 149-159 Zbl0107.04203MR132722
- V. Komornik, P. Loreti, Unique developments in non-integer bases, Amer. Math. Monthly 105 (1998), 636-639 Zbl0918.11006MR1633077
- S. Lang, Fundamentals of Diophantine Geometry, Springer-Verlag, New York (1983), 158-187 Zbl0528.14013MR715605
- W. J. LeVeque, Topics in Number Theory, Addison-Wesley II (1956), 121-160 Zbl0070.03804MR80682
- D. Lind, The entropies of topological Markov shifts and a related class of algebraic integers, Erg. Th. Dyn. Syst. 4 (1984), 283-300 Zbl0546.58035MR766106
- D. Lind, Matrices of Perron numbers, J. Number Theory 40 (1992), 211-217 Zbl0748.11051MR1149738
- M. Lothaire, Algebraic Combinatorics on Words, (2003), Cambridge University Press Zbl1001.68093MR1905123
- K. Mahler, Arithmetic properties of lacunary power series with integral coefficients, J. Austr. Math. Soc. 5 (1965), 56-64 Zbl0148.27703MR190094
- K. Nishioka, Algebraic independence by Mahler’s method and S-units equations, Compositio Math. 92 (1994), 87-110 Zbl0802.11029MR1275722
- A. Ostrowski, On representation of analytical functions by power series, J. London Math. Soc. 1 (1926), 251-263 Zbl52.0292.01
- W. Parry, On the -expansions of real numbers, Acta Math. Acad. Sci. Hung. 11 (1960), 401-416 Zbl0099.28103MR142719
- N. Pythéas Fogg, Substitutions in dynamics, arithmetics and combinatorics, (2003), Springer Lecture Notes in Math. 1794 Zbl1014.11015MR1970385
- A. Rényi, Representations for real numbers and their ergodic properties, Acta Math. Acad. Sci. Hung. 8 (1957), 477-493 Zbl0079.08901MR97374
- J. Schmeling, Symbolic dynamics for -shift and self-normal numbers, Ergod. Th. & Dynam. Sys. 17 (1997), 675-694 Zbl0908.58017MR1452189
- K. Schmidt, On periodic expansions of Pisot numbers and Salem numbers, Bull. London Math. Soc. 12 (1980), 269-278 Zbl0494.10040MR576976
- W. M. Schmidt, Diophantine Approximations and Diophantine Equations, (1991), Springer Lecture Notes in Math. 1467 Zbl0754.11020MR1176315
- B. Solomyak, Conjugates of beta-numbers and the zero-free domain for a class of analytic functions, Proc. London Math. Soc. (3) 68 (1993), 477-498 Zbl0820.30007MR1262305
- W. P. Thurston, Groups, tilings, and finite state automata, (Summer 1989)
- J.-L. Verger-Gaugry, On self-similar finitely generated uniformly discrete (SFU-) sets and sphere packings, Number Theory and Physics (2006), NyssenL.L. Zbl1170.52303
- M. Waldschmidt, Diophantine Approximation on Linear Algebraic Groups. Transcendence Properties of the Exponential Function in Several Variables, (2000), Springer-Verlag, Berlin Zbl0944.11024MR1756786
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.