On gaps in Rényi β -expansions of unity for β > 1 an algebraic number

Jean-Louis Verger-Gaugry[1]

  • [1] Université de Grenoble I Institut Fourier UMR CNRS 5582 BP 74 - Domaine Universitaire, 38402 Saint-Martin d’Hères (France)

Annales de l’institut Fourier (2006)

  • Volume: 56, Issue: 7, page 2565-2579
  • ISSN: 0373-0956

Abstract

top
Let β > 1 be an algebraic number. We study the strings of zeros (“gaps”) in the Rényi β -expansion   d β ( 1 ) of unity which controls the set β of β -integers. Using a version of Liouville’s inequality which extends Mahler’s and Güting’s approximation theorems, the strings of zeros in d β ( 1 ) are shown to exhibit a “gappiness” asymptotically bounded above by   log ( M ( β ) ) / log ( β ) , where   M ( β )   is the Mahler measure of   β . The proof of this result provides in a natural way a new classification of algebraic numbers > 1 with classes called Q i ( j ) which we compare to Bertrand-Mathis’s classification with classes C 1 to C 5 (reported in an article by Blanchard). This new classification relies on the maximal asymptotic “quotient of the gap” value of the “gappy” power series associated with d β ( 1 ) . As a corollary, all Salem numbers are in the class C 1 Q 0 ( 1 ) Q 0 ( 2 ) Q 0 ( 3 ) ; this result is also directly proved using a recent generalization of the Thue-Siegel-Roth Theorem given by Corvaja.

How to cite

top

Verger-Gaugry, Jean-Louis. "On gaps in Rényi $\beta $-expansions of unity for $\beta &gt; 1$ an algebraic number." Annales de l’institut Fourier 56.7 (2006): 2565-2579. <http://eudml.org/doc/10214>.

@article{Verger2006,
abstract = {Let $\beta &gt; 1$ be an algebraic number. We study the strings of zeros (“gaps”) in the Rényi $\beta $-expansion  $d_\{\beta \}(1)$ of unity which controls the set $\mathbb\{Z\}_\{\beta \}$ of $\beta $-integers. Using a version of Liouville’s inequality which extends Mahler’s and Güting’s approximation theorems, the strings of zeros in $d_\{\beta \}(1)$ are shown to exhibit a “gappiness” asymptotically bounded above by  $\log (\{\rm M\}(\beta ))/\log (\beta )$, where  $\{\rm M\}(\beta )$  is the Mahler measure of  $\beta $. The proof of this result provides in a natural way a new classification of algebraic numbers $&gt; 1$ with classes called Q$_i^\{(j)\}$ which we compare to Bertrand-Mathis’s classification with classes C$_1$ to C$_5$ (reported in an article by Blanchard). This new classification relies on the maximal asymptotic “quotient of the gap” value of the “gappy” power series associated with $d_\{\beta \}(1)$. As a corollary, all Salem numbers are in the class C$_1 \cup \,$Q$_\{0\}^\{(1)\} \cup $ Q$_\{0\}^\{(2)\} \cup $ Q$_\{0\}^\{(3)\}$ ; this result is also directly proved using a recent generalization of the Thue-Siegel-Roth Theorem given by Corvaja.},
affiliation = {Université de Grenoble I Institut Fourier UMR CNRS 5582 BP 74 - Domaine Universitaire, 38402 Saint-Martin d’Hères (France)},
author = {Verger-Gaugry, Jean-Louis},
journal = {Annales de l’institut Fourier},
keywords = {Beta-integer; beta-numeration; PV number; Salem number; Perron number; Mahler measure; Diophantine approximation; Mahler’s series; mathematical quasicrystal; beta expansions; Pisot number},
language = {eng},
number = {7},
pages = {2565-2579},
publisher = {Association des Annales de l’institut Fourier},
title = {On gaps in Rényi $\beta $-expansions of unity for $\beta &gt; 1$ an algebraic number},
url = {http://eudml.org/doc/10214},
volume = {56},
year = {2006},
}

TY - JOUR
AU - Verger-Gaugry, Jean-Louis
TI - On gaps in Rényi $\beta $-expansions of unity for $\beta &gt; 1$ an algebraic number
JO - Annales de l’institut Fourier
PY - 2006
PB - Association des Annales de l’institut Fourier
VL - 56
IS - 7
SP - 2565
EP - 2579
AB - Let $\beta &gt; 1$ be an algebraic number. We study the strings of zeros (“gaps”) in the Rényi $\beta $-expansion  $d_{\beta }(1)$ of unity which controls the set $\mathbb{Z}_{\beta }$ of $\beta $-integers. Using a version of Liouville’s inequality which extends Mahler’s and Güting’s approximation theorems, the strings of zeros in $d_{\beta }(1)$ are shown to exhibit a “gappiness” asymptotically bounded above by  $\log ({\rm M}(\beta ))/\log (\beta )$, where  ${\rm M}(\beta )$  is the Mahler measure of  $\beta $. The proof of this result provides in a natural way a new classification of algebraic numbers $&gt; 1$ with classes called Q$_i^{(j)}$ which we compare to Bertrand-Mathis’s classification with classes C$_1$ to C$_5$ (reported in an article by Blanchard). This new classification relies on the maximal asymptotic “quotient of the gap” value of the “gappy” power series associated with $d_{\beta }(1)$. As a corollary, all Salem numbers are in the class C$_1 \cup \,$Q$_{0}^{(1)} \cup $ Q$_{0}^{(2)} \cup $ Q$_{0}^{(3)}$ ; this result is also directly proved using a recent generalization of the Thue-Siegel-Roth Theorem given by Corvaja.
LA - eng
KW - Beta-integer; beta-numeration; PV number; Salem number; Perron number; Mahler measure; Diophantine approximation; Mahler’s series; mathematical quasicrystal; beta expansions; Pisot number
UR - http://eudml.org/doc/10214
ER -

References

top
  1. B. Adamczewski, Transcendance “à la Liouville” de certains nombres réels, C. R. Acad. Sci. Paris 338 (2004), 511-514 Zbl1046.11051MR2057021
  2. J.-P. Allouche, M. Cosnard, The Komornik-Loreti constant is tanscendental, Amer. Math. Monthly 107 (2000), 448-449 Zbl0997.11052MR1763399
  3. J.-P. Allouche, J. Shallit, The ubiquitous Prouhet-Thue-Morse sequence, Sequences and Their Applications (1999), 1-16, Springer-Verlag Zbl1005.11005MR1843077
  4. M.-J. Bertin, A. Decomps-Guilloux, M. Grandet-Hugot, M. Pathiaux-Delefosse, J.-P. Schreiber, Pisot and Salem Numbers, (1992), Birkhaüser Zbl0772.11041MR1187044
  5. A. Bertrand-Mathis, Questions diverses relatives aux systèmes codés : applications au   θ -shift 
  6. A. Bertrand-Mathis, Développements en base Pisot et répartition modulo   1 , C. R. Acad. Sci. Paris 285 (1977), 419-421 Zbl0362.10040MR447134
  7. A. Bertrand-Mathis, Développements en base θ et répartition modulo 1 de la suite ( x θ n ) , Bull. Soc. Math. Fr. 114 (1986), 271-324 Zbl0628.58024MR878240
  8. F. Blanchard, β -expansions and Symbolic Dynamics, Theoret. Comput. Sci. 65 (1989), 131-141 Zbl0682.68081MR1020481
  9. D. Boyd, Salem numbers of degree four have periodic expansions, Théorie des Nombres - Number Theory (1989), 57-64, Walter de Gruyter & Co., Eds. J.M. de Koninck and C. Levesque, Berlin and New York Zbl0685.12004MR1024551
  10. D. Boyd, On beta expansions for Pisot numbers, Math. Comp. 65 (1996), 841-860 Zbl0855.11039MR1325863
  11. D. Boyd, On the beta expansion for Salem numbers of degree 6, Math. Comp. 65 (1996), 861-875 Zbl0848.11048MR1333306
  12. D. Boyd, The beta expansions for Salem numbers, Organic Mathematics (1997), 117-131, A.M.S., Providence, RI Zbl1053.11536MR1483916
  13. C. Burdik, Ch. Frougny, J.-P. Gazeau, R. Krejcar, Beta-integers as natural counting systems for quasicrystals, J. Phys. A: Math. Gen. 31 (1998), 6449-6472 Zbl0941.52019MR1644115
  14. D. P. Chi, D. Kwon, Sturmian words,   β -shifts, and transcendence, Theoret. Comput. Sci. 321 (2004), 395-404 Zbl1068.68112MR2076154
  15. P. Corvaja, Autour du Théorème de Roth, Monath. Math. 124 (1997), 147-175 Zbl0883.11033MR1462860
  16. P. Corvaja, U. Zannier, Some New Applications of the Subspace Theorem, Compositio Mathematica 131 (2002), 319-340 Zbl1010.11038MR1905026
  17. M. Denker, C. Grillenberger, K. Sigmund, Ergodic Theory on compact spaces, (1976), Springer Lecture Notes in Math. 527 Zbl0328.28008MR457675
  18. A. Elkharrat, C. Frougny, J.-P. Gazeau, J.-L. Verger-Gaugry, Symmetry groups for beta-lattices, Theor. Comp. Sci. 319 (2004), 281-305 Zbl1068.52028MR2074957
  19. S. Fabre, Substitutions et β -systèmes de numération, Theoret. Comput. Sci. 137 (1995), 219-236 Zbl0872.11017MR1311222
  20. L. Flatto, J.C. Lagarias, B. Poonen, The zeta function of the beta transformation, Ergod. Th. and Dynam. Sys. 14 (1994), 237-266 Zbl0843.58106MR1279470
  21. C. Frougny, J.-P. Gazeau, R. Krejcar, Additive and multiplicative properties of point sets based on beta-integers, Theoret. Comput. Sci. 303 (2003), 491-516 Zbl1036.11034MR1990778
  22. C. Frougny, B. Solomyak, Finite beta-expansions, Ergod. Theor. Dynam. Sys. 12 (1992), 713-723 Zbl0814.68065MR1200339
  23. Ch. Frougny, Number Representation and Finite Automata, London Math. Soc. Lecture Note Ser. 279 (2000), 207-228 Zbl0976.11003MR1776760
  24. Ch. Frougny, Algebraic Combinatorics on Words, (2003), Cambridge University Press MR1905123
  25. J.-P. Gazeau, Pisot-Cyclotomic Integers for Quasilattices, The Mathematics of Long-Range Aperiodic Order (1997), 175-198, Ed. R. V. Moody, Kluwer Academic Publisher, Dordrecht Zbl0887.11043MR1460024
  26. J.-P. Gazeau, J.-L. Verger-Gaugry, Geometric study of the set of β -integers for a Perron number and mathematical quasicrystals, J. Th. Nombres Bordeaux 16 (2004), 1-25 Zbl1075.11007MR2145576
  27. J.-P. Gazeau, J.-L. Verger-Gaugry, Diffraction spectra of weighted Delone sets on β -lattices with β a quadratic unitary Pisot number, (2006) Zbl1119.52015
  28. R. Güting, Approximation of algebraic numbers by algebraic numbers, Michigan Math. J. 8 (1961), 149-159 Zbl0107.04203MR132722
  29. V. Komornik, P. Loreti, Unique developments in non-integer bases, Amer. Math. Monthly 105 (1998), 636-639 Zbl0918.11006MR1633077
  30. S. Lang, Fundamentals of Diophantine Geometry, Springer-Verlag, New York (1983), 158-187 Zbl0528.14013MR715605
  31. W. J. LeVeque, Topics in Number Theory, Addison-Wesley II (1956), 121-160 Zbl0070.03804MR80682
  32. D. Lind, The entropies of topological Markov shifts and a related class of algebraic integers, Erg. Th. Dyn. Syst. 4 (1984), 283-300 Zbl0546.58035MR766106
  33. D. Lind, Matrices of Perron numbers, J. Number Theory 40 (1992), 211-217 Zbl0748.11051MR1149738
  34. M. Lothaire, Algebraic Combinatorics on Words, (2003), Cambridge University Press Zbl1001.68093MR1905123
  35. K. Mahler, Arithmetic properties of lacunary power series with integral coefficients, J. Austr. Math. Soc. 5 (1965), 56-64 Zbl0148.27703MR190094
  36. K. Nishioka, Algebraic independence by Mahler’s method and S-units equations, Compositio Math. 92 (1994), 87-110 Zbl0802.11029MR1275722
  37. A. Ostrowski, On representation of analytical functions by power series, J. London Math. Soc. 1 (1926), 251-263 Zbl52.0292.01
  38. W. Parry, On the β -expansions of real numbers, Acta Math. Acad. Sci. Hung. 11 (1960), 401-416 Zbl0099.28103MR142719
  39. N. Pythéas Fogg, Substitutions in dynamics, arithmetics and combinatorics, (2003), Springer Lecture Notes in Math. 1794 Zbl1014.11015MR1970385
  40. A. Rényi, Representations for real numbers and their ergodic properties, Acta Math. Acad. Sci. Hung. 8 (1957), 477-493 Zbl0079.08901MR97374
  41. J. Schmeling, Symbolic dynamics for β -shift and self-normal numbers, Ergod. Th. & Dynam. Sys. 17 (1997), 675-694 Zbl0908.58017MR1452189
  42. K. Schmidt, On periodic expansions of Pisot numbers and Salem numbers, Bull. London Math. Soc. 12 (1980), 269-278 Zbl0494.10040MR576976
  43. W. M. Schmidt, Diophantine Approximations and Diophantine Equations, (1991), Springer Lecture Notes in Math. 1467 Zbl0754.11020MR1176315
  44. B. Solomyak, Conjugates of beta-numbers and the zero-free domain for a class of analytic functions, Proc. London Math. Soc. (3) 68 (1993), 477-498 Zbl0820.30007MR1262305
  45. W. P. Thurston, Groups, tilings, and finite state automata, (Summer 1989) 
  46. J.-L. Verger-Gaugry, On self-similar finitely generated uniformly discrete (SFU-) sets and sphere packings, Number Theory and Physics (2006), NyssenL.L. Zbl1170.52303
  47. M. Waldschmidt, Diophantine Approximation on Linear Algebraic Groups. Transcendence Properties of the Exponential Function in Several Variables, (2000), Springer-Verlag, Berlin Zbl0944.11024MR1756786

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.