The K -groups of λ -rings. Part II. Invertibility of the logarithmic map

F. J.-B. J. Clauwens

Compositio Mathematica (1994)

  • Volume: 92, Issue: 2, page 205-225
  • ISSN: 0010-437X

How to cite


Clauwens, F. J.-B. J.. "The $K$-groups of $\lambda $-rings. Part II. Invertibility of the logarithmic map." Compositio Mathematica 92.2 (1994): 205-225. <>.

author = {Clauwens, F. J.-B. J.},
journal = {Compositio Mathematica},
keywords = {linearized algebraic -group; Chern class map; -nilpotency; -ring; -ideal},
language = {eng},
number = {2},
pages = {205-225},
publisher = {Kluwer Academic Publishers},
title = {The $K$-groups of $\lambda $-rings. Part II. Invertibility of the logarithmic map},
url = {},
volume = {92},
year = {1994},

AU - Clauwens, F. J.-B. J.
TI - The $K$-groups of $\lambda $-rings. Part II. Invertibility of the logarithmic map
JO - Compositio Mathematica
PY - 1994
PB - Kluwer Academic Publishers
VL - 92
IS - 2
SP - 205
EP - 225
LA - eng
KW - linearized algebraic -group; Chern class map; -nilpotency; -ring; -ideal
UR -
ER -


  1. 1 Atiyah, M.F. and Segal, G.B.: Equivariant K-theory and completion. J. Differential Geometry3 (1969) 1-18. Zbl0215.24403MR259946
  2. 2 Clauwens, F.J.-B.J.: The K-groups of λ-rings. I. Construction of the logarithmic invariant. Compositio Math.61 (1987) 295-328. Zbl0626.18008
  3. 3 Clauwens, F.J.-B.J.: K-theory, λ-rings, and formal groups. Compositio Math.65 (1988) 223-240. Zbl0646.18004
  4. 4 Goodwillie, T.G.: Relative algebraic K-theory and cyclic homology. Annals of Math.124 (1986), 347-402. Zbl0627.18004MR855300
  5. 5 Grothendieck, A.: Technique de descente et théorèmes d'existence en Géométrie Algébrique. II. Le théorème d'existence en théorie formelle des modules. Séminaire Bourbaki195 (1959/60). Zbl0234.14007
  6. 6 Hood, C.E. and Jones, J.D.S.: Some algebraic properties of cyclic homology groups. K-Theory1 (1987) 361-384. Zbl0636.18005MR920950
  7. 7 Keune, F.: The relativization of K2. J. of Alg. 54 (1978) 159-177. Zbl0403.18009MR511460
  8. 8 Knutson, D.: λ-Rings and the Representation Theory of the Symmetric Group. Springer-Verlag, New York, 1973. Zbl0272.20008
  9. 9 Maazen, H. and Stienstra, J.: A presentation for K2 of split radical pairs. J. of Pure and Appl. Alg.10 (1977) 271-294. Zbl0393.18013MR472795
  10. 10 Weibel, C.A.: Nil K-theory maps top cyclic homology. Transactions of the American Mathematical Society303 (1987) 541-558. Zbl0627.18005MR902784

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.