The K -groups of λ -rings. Part I. Construction of the logarithmic invariant

F. J.-B. J. Clauwens

Compositio Mathematica (1987)

  • Volume: 61, Issue: 3, page 295-328
  • ISSN: 0010-437X

How to cite


Clauwens, F. J.-B. J.. "The $K$-groups of $\lambda $-rings. Part I. Construction of the logarithmic invariant." Compositio Mathematica 61.3 (1987): 295-328. <>.

author = {Clauwens, F. J.-B. J.},
journal = {Compositio Mathematica},
keywords = {algebraic K-theory; Kähler differentials; -rings},
language = {eng},
number = {3},
pages = {295-328},
publisher = {Martinus Nijhoff Publishers},
title = {The $K$-groups of $\lambda $-rings. Part I. Construction of the logarithmic invariant},
url = {},
volume = {61},
year = {1987},

AU - Clauwens, F. J.-B. J.
TI - The $K$-groups of $\lambda $-rings. Part I. Construction of the logarithmic invariant
JO - Compositio Mathematica
PY - 1987
PB - Martinus Nijhoff Publishers
VL - 61
IS - 3
SP - 295
EP - 328
LA - eng
KW - algebraic K-theory; Kähler differentials; -rings
UR -
ER -


  1. Atiyah, M.F. and Tall, D.O.: Group representations, λ-rings and the J-homomorphism. Topology8 (1969) 253-297. Zbl0159.53301
  2. Bass, H. and Murphy, M.P.: Grothendieck groups and Picard groups of abelian group rings. Ann. of Math.86 (1967) 16-73. Zbl0157.08202MR219592
  3. Bloch, S.: On the tangent space to Quillen K-theory. In: Algebraic K-Theory I. Lecture Notes 341. Springer (1972) 205-210. Zbl0287.18016MR466264
  4. Bloch, S.: K2 of Artinian Q-algebras with application to algebraic cycles. Comm. in Alg. 3 (1975) 405-428. Zbl0327.14002MR371891
  5. Clauwens, F.: The K2 of truncated integral polynomial rings. Dept. of Math. Catholic University Nijmegen, report 8416. 
  6. Grothendieck, A.: La theorie des classes de Chern. Bull. Soc. Math.86 (1958) 137-154. Zbl0091.33201MR116023
  7. Van der Kallen, W.: Le K2 des nombres duaux. C.R. Acad. Sci. Paris273 (1971) 1204-1207. Zbl0225.13006
  8. Van der Kallen, W. and Stienstra, J.: The relative K2 of truncated polynomial rings. J. Pure and Appl. Alg.34 (1984) 277-289. Zbl0548.13008MR772063
  9. Kassel, C. and Loday, J.-L.: Extensions centrales d'algebres de Lie. Ann. Inst. Fourier32 (1982) 119-142. Zbl0485.17006MR694130
  10. Keune, F.: The relativization of K2. J. of Alg.54 (1978) 159-177. Zbl0403.18009MR511460
  11. Knutson, D.: λ-rings and the representation theory of the symmetric group. Lecture Notes 308. Springer Verlag, New York, (1973). Zbl0272.20008
  12. Labute, J. and Russell, P.: On K2 of truncated polynomial rings. J. of Pure and Appl. Alg.6 (1975) 239-251. Zbl0442.13014MR396595
  13. Loday, J.-L.: Symboles en K-theorie superieure. C.R. Acad. Sci. Paris292 (1981) 863-866. Zbl0493.18006MR623517
  14. Loday, J.-L. and Quillen, D.: Cyclic homology and the Lie algebra homology of matrices. Comm. Math. Helv.59 (1984) 565-591. Zbl0565.17006MR780077
  15. Maazen, H. and Stienstra, J.: A presentation for K2 of split radical pairs. J. of Pure and Appl. Alg.10 (1977) 271-294. Zbl0393.18013MR472795
  16. Metropolis, N. and Rota, G.C.: Witt vectors and the algebra of necklaces. Adv. in Math.50 (1983) 95-125. Zbl0545.05009MR723197
  17. Oliver, R.: K2 of p-adic group rings of abelian p-groups. Matematisk Institut, Aarhus Universitet, preprint 1984/85 no 12. MR900344
  18. Roberts, L. and Geller, S.: K2 of some truncated polynomial rings. In: Ring theory, Waterloo 1978. Lecture Notes in Math. 734. Springer Verlag (1978) 249-279. Zbl0415.13003MR548133
  19. Stienstra, J.: On K2 and K3 of Truncated Polynomial Rings. In: Algebraic K-theory, Evanston 1980. Lecture Notes in Math. 854. Springer Verlag (1980) 409-455. Zbl0463.13007MR618315
  20. Wilkerson, C.: λ-rings, binomial domains, and vector bundles over CP(∞). Comm. in Alg.10 (1982) 311-328. Zbl0492.55004

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.