Holomorphic forms and holomorphic vector fields on compact generalized Hopf manifolds

Kazumi Tsukada

Compositio Mathematica (1994)

  • Volume: 93, Issue: 1, page 1-22
  • ISSN: 0010-437X

How to cite

top

Tsukada, Kazumi. "Holomorphic forms and holomorphic vector fields on compact generalized Hopf manifolds." Compositio Mathematica 93.1 (1994): 1-22. <http://eudml.org/doc/90311>.

@article{Tsukada1994,
author = {Tsukada, Kazumi},
journal = {Compositio Mathematica},
keywords = {compact locally conformal Kähler manifolds; generalized Hopf manifolds; Lee form; holomorphic forms; holomorphic vector fields},
language = {eng},
number = {1},
pages = {1-22},
publisher = {Kluwer Academic Publishers},
title = {Holomorphic forms and holomorphic vector fields on compact generalized Hopf manifolds},
url = {http://eudml.org/doc/90311},
volume = {93},
year = {1994},
}

TY - JOUR
AU - Tsukada, Kazumi
TI - Holomorphic forms and holomorphic vector fields on compact generalized Hopf manifolds
JO - Compositio Mathematica
PY - 1994
PB - Kluwer Academic Publishers
VL - 93
IS - 1
SP - 1
EP - 22
LA - eng
KW - compact locally conformal Kähler manifolds; generalized Hopf manifolds; Lee form; holomorphic forms; holomorphic vector fields
UR - http://eudml.org/doc/90311
ER -

References

top
  1. 1 A. El. Kacimi-Alaoui: Opérateurs transversalement elliptiques sur un feuilletage riemannien et applications. Comp. Math.73 (1990) 57-106. Zbl0697.57014MR1042454
  2. 2 A. El Kacimi-Alaoui et G. Hector: Decomposition de Hodge basique pour un feuilletage riemannien. Ann. Inst. Fourier36 (1986) 207-227. Zbl0586.57015MR865667
  3. 3 A. Frölicher: Relations between the cohomology groups of Dolbeault and topological invariants. Proc. Nat. Acad. Sci. U.S.A.41 (1955) 641-644. Zbl0065.16502MR73262
  4. 4 T. Kashiwada: On V-harmonic forms in compact locally conformal Kähler manifolds with the parallel Lee form. Kodai Math. J.3 (1980) 70-82. Zbl0434.53022MR569534
  5. 5 S. Nishikawa and P. Tondeur: Transversal infinitesimal automorphisms for harmonic Kähler foliations. Tôhoku Math. J.40 (1988) 599-611. Zbl0664.53014MR972248
  6. 6 P. Tondeur: Foliations on Riemannian manifolds. Universitext, Springer-Verlag, 1988. Zbl0643.53024MR934020
  7. 7 I. Vaisman: On locally conformal almost Kähler manifolds. Israel J. Math.24 (1976) 338-351. Zbl0335.53055MR418003
  8. 8 I. Vaisman: Locally conformal Kähler manifolds with parallel Lee form. Rend. Mat. Roma12 (1979) 263-284. Zbl0447.53032MR557668
  9. 9 I. Vaisman: On locally and globally conformal Kähler manifolds. Trans. Amer. Math. Soc.262 (1980) 533-542. Zbl0446.53048MR586733
  10. 10 I. Vaisman: Generalized Hopf manifolds. Geom. Dedicata13 (1982) 231-255. Zbl0506.53032MR690671

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.