Selmer groups and Heegner points in anticyclotomic p -extensions

Massimo Bertolini

Compositio Mathematica (1995)

  • Volume: 99, Issue: 2, page 153-182
  • ISSN: 0010-437X

How to cite


Bertolini, Massimo. "Selmer groups and Heegner points in anticyclotomic $\mathbb {Z}_p$-extensions." Compositio Mathematica 99.2 (1995): 153-182. <>.

author = {Bertolini, Massimo},
journal = {Compositio Mathematica},
keywords = {anticyclotomic -extension; modular elliptic curve; Heegner hypothesis; Iwasawa algebra; Heegner points; Selmer group; Iwasawa theory},
language = {eng},
number = {2},
pages = {153-182},
publisher = {Kluwer Academic Publishers},
title = {Selmer groups and Heegner points in anticyclotomic $\mathbb \{Z\}_p$-extensions},
url = {},
volume = {99},
year = {1995},

AU - Bertolini, Massimo
TI - Selmer groups and Heegner points in anticyclotomic $\mathbb {Z}_p$-extensions
JO - Compositio Mathematica
PY - 1995
PB - Kluwer Academic Publishers
VL - 99
IS - 2
SP - 153
EP - 182
LA - eng
KW - anticyclotomic -extension; modular elliptic curve; Heegner hypothesis; Iwasawa algebra; Heegner points; Selmer group; Iwasawa theory
UR -
ER -


  1. 1 Bertolini, M.: Iwasawa Theory, L-functions and Heegner Points, PhD Thesis, Columbia University, 1992. 
  2. 2 Bertolini, M. and Darmon, H.: Kolyvagin's descent and Mordell-Weil groups over ring class fields, J. für die Reine und Angewandte Mathematik412 (1990), 63-74. Zbl0712.14008MR1079001
  3. 3 Bertolini, M. and Darmon, H.: Derived heights and generalized Mazur-Tate regulators, Duke Math. J.76 (1994), 75-111. Zbl0853.14013MR1301187
  4. 4 Bertolini, M. and Darmon, H.: Derived p-adic heights, submitted. 
  5. 5 Bourbaki, N.: Algèbre Commutative, Ch.7, Diviseurs, Hermann et Co., Paris, 1965. Zbl0141.03501MR260715
  6. 6 Darmon, H.: Refined Class Number Formulas and Derivatives of L-functions, PhD Thesis, Harvard University, 1991. 
  7. 7 Cassels, J.W.S. and Frölich, A.: Algebraic Number Theory, Academic Press, New York, 1969. Zbl0153.07403MR215665
  8. 8 Gross, B.H.: Kolyvagin's work on modular elliptic curves, in L-functions and Arithmetic, Cambridge University Press, Cambridge, 1991, pp. 235-256. Zbl0743.14021MR1110395
  9. 9 Gross, B.H. and Zagier, D.: Heegner points and derivatives of L-series, Inventiones Math.84 (1986), 225-320. Zbl0608.14019MR833192
  10. 10 Kolyvagin, V.A.: Euler Systems, The Grothendieck Festschrift, vol. 2, Progr. in Math. 87, Birkhäuser, 1990, pp. 435-483. Zbl0742.14017MR1106906
  11. 11 Lang, S.: Algebra, 2nd edn, Addison Wesley, 1984. Zbl0712.00001
  12. 12 Mazur, B.: Modular Curves and Arithmetic, Proc. Int. Congress of Math., Warszawa, 1983. Zbl0597.14023
  13. 13 Mazur, B.: Rational points of Abelian Varieties with values in towers of number fields, Inventiones Math.18 (1972), 183-266. Zbl0245.14015MR444670
  14. 14 Manin, Ju.: Cyclotomic fields and modular curves. Engl. transl.: Russian Math. Surveys26 (1971), 7-78. Zbl0266.14012MR401653
  15. 15 Milne, J.S.: Arithmetic duality theorems, in Perspective in Math., Academic Press, New York, 1986. Zbl0613.14019MR881804
  16. 16 Perrin-Riou, B.: Fonctions L p-adiques, Théorie d'Iwasawa et points de Heegner, Bull. Soc. Math. de France115 (1987), 399-456. Zbl0664.12010MR928018
  17. 17 Perrin-Riou, B.: Points de Heegner et derivées de fonctions L p-adiques, Inventiones Math.89 (1987), 455-510. Zbl0645.14010MR903381
  18. 18 Rohrlich, D.: On L-functions of elliptic curves and anti-cyclotomic towers, Inventiones Math.64 (1984), 383-408. Zbl0565.14008MR735332
  19. 19 Rubin, K.C.: The Main Conjecture, Appendix in S. Lang, Cyclotomic fields, I and II, GTM 121, Springer-Verlag, 1990. Zbl0704.11038
  20. 20 Rubin, K.C.: The "main conjectures" of Iwasawa theory for imaginary quadratic fields, Inventiones Math. 103 (1991), 25-68. Zbl0737.11030MR1079839
  21. 21 Serre, J.P.: Propriétés galoisiennes des points d'ordre fini des courbes elliptiques, Inventiones Math.15 (1972), 259-331. Zbl0235.14012MR387283
  22. 22 Serre, J.P.: Abelian l-adic Representations and Elliptic Curves, Advanced Book Classics, Addison Wesley, 1989. Zbl0709.14002MR1043865
  23. 23 Tate, J.: WC-groups over p-adic Fields, Séminaire Bourbaki no. 156, 1957. Zbl0091.33701MR105420
  24. 24 Tate, L.: Duality theorems in Galois cohomology over number fields, in Proc. Int. Congress of Math., Stockholm, 1962, pp. 288-295. Zbl0126.07002MR175892

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.