Iwasawa theory for elliptic curves over imaginary quadratic fields
Journal de théorie des nombres de Bordeaux (2001)
- Volume: 13, Issue: 1, page 1-25
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topBertolini, Massimo. "Iwasawa theory for elliptic curves over imaginary quadratic fields." Journal de théorie des nombres de Bordeaux 13.1 (2001): 1-25. <http://eudml.org/doc/248714>.
@article{Bertolini2001,
abstract = {Let $E$ be an elliptic curve over $\mathbb \{Q\}$, let $K$ be an imaginary quadratic field, and let $K_ \infty $ be a $\mathbb \{Z\}_p$-extension of $K$. Given a set $\Sigma $ of primes of $K$, containing the primes above $p$, and the primes of bad reduction for $E$, write $K_\Sigma $ for the maximal algebraic extension of $K$ which is unramified outside $\Sigma $. This paper is devoted to the study of the structure of the cohomology groups $H^i (K_\Sigma / K_\infty , E_\{p^ \infty \})$ for $i = 1, 2,$ and of the $p$-primary Selmer group Sel$_\{p^ \infty \}(E / K_\infty )$, viewed as discrete modules over the Iwasawa algebra of $K_\infty / K.$},
author = {Bertolini, Massimo},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {elliptic curve; Selmer group; anticyclotomic extension; Iwasawa theory; complex multiplication; Heegner points},
language = {eng},
number = {1},
pages = {1-25},
publisher = {Université Bordeaux I},
title = {Iwasawa theory for elliptic curves over imaginary quadratic fields},
url = {http://eudml.org/doc/248714},
volume = {13},
year = {2001},
}
TY - JOUR
AU - Bertolini, Massimo
TI - Iwasawa theory for elliptic curves over imaginary quadratic fields
JO - Journal de théorie des nombres de Bordeaux
PY - 2001
PB - Université Bordeaux I
VL - 13
IS - 1
SP - 1
EP - 25
AB - Let $E$ be an elliptic curve over $\mathbb {Q}$, let $K$ be an imaginary quadratic field, and let $K_ \infty $ be a $\mathbb {Z}_p$-extension of $K$. Given a set $\Sigma $ of primes of $K$, containing the primes above $p$, and the primes of bad reduction for $E$, write $K_\Sigma $ for the maximal algebraic extension of $K$ which is unramified outside $\Sigma $. This paper is devoted to the study of the structure of the cohomology groups $H^i (K_\Sigma / K_\infty , E_{p^ \infty })$ for $i = 1, 2,$ and of the $p$-primary Selmer group Sel$_{p^ \infty }(E / K_\infty )$, viewed as discrete modules over the Iwasawa algebra of $K_\infty / K.$
LA - eng
KW - elliptic curve; Selmer group; anticyclotomic extension; Iwasawa theory; complex multiplication; Heegner points
UR - http://eudml.org/doc/248714
ER -
References
top- [1] M. Bertolini, Selmer groups and Heegner points in anticyclotomic Zp-extensions. Compositio Math.99 (1995), 153-182. Zbl0862.11043MR1351834
- [2] M. Bertolini, An annihilator for the p-Selmer group by means of Heegner points. Atti Acc. Naz. Lincei, Classe di Sc. Fis., Mat. e Nat., Rendiconti Lincei, Mat. e Appl., Serie 9, Vol. 5, Fasc. 2 (1994), 129-140. Zbl0853.11049MR1292568
- [3] M. Bertolini, Growth of Mordell-Weil groups in anticyclotomic towers. Symposia Mathematica, Proceedings of the Symposium in Arithmetic Geometry, Cortona1994, E. Bombieri, et al., eds., Cambridge Univ. Press, to appear. Zbl0911.14010MR1472490
- [4] M. Bertolini, H. Darmon, Derived heights and generalized Mazur-Tate regulators. Duke Math. Journal76 (1994), 75-111. Zbl0853.14013MR1301187
- [5] M. Bertolini, H. Darmon, Heegner points on Mumford-Tate curves. Inventiones Math., to appear. Zbl0882.11034
- [6] J. Coates, R. Greenberg, Kummer theory for Abelian varieties over local fields. Inventiones Math.124 (1996), 129-174. Zbl0858.11032MR1369413
- [7] J. Coates, G. McConnell, Iwasawa theory of modular elliptic curves of analytic rank at most 1. J. London Math. Soc. (2) 50 (1994), 243-264. Zbl0864.11053MR1291735
- [8] R. Greenberg, Iwasawa theory for p-adic representations. Algebraic Number Theory- in honor of K. Iwasawa, J. Coates et al., editors, Advanced Studies in Pure Mathematics, 1989, Academic Press. Zbl0739.11045MR1097613
- [9] S. Lang, Cyclotomic fields I and II (Combined second edition,)GTM121, 1990, Springer. Zbl0704.11038MR1029028
- [10] B. Mazur, Rational points of Abelian Varieties with values in towers of number fields. Inventiones Math.18 (1972), 183-266. Zbl0245.14015MR444670
- [11] B. Mazur, Modular Curves and Arithmetic, Proc. Int. Cong. of Math.1983, Warszawa. Zbl0597.14023
- [12] B. Mazur, Elliptic curves and towers of number fields. Unpublished manuscript.
- [13] J-S. Milne, Arithmetic duality theorems. Perspective in Math., Academic Press, 1986. Zbl0613.14019MR881804
- [14] B. Perrin-Riou, Fonctions L p-adiques, Théorie d'Iwasawa et points de Heegner. Bull. Soc. Math. de France115 (1987), 399-456. Zbl0664.12010MR928018
- [15] B. Perrin-Riou, Théorie d'Iwasawa et hauteurs p-adiques. Inventiones Math.109 (1992), 137-185. Zbl0781.14013MR1168369
- [16] D. Rohrlich, On L-functions of elliptic curves and anti-cyclotomic towers. Inventiones Math.64 (1984), 393-408. Zbl0565.14008
- [17] D. Rohrlich, On L-functions of elliptic curves and cyclotomic towers. Inventiones Math.75 (1984), 409-423. Zbl0565.14006MR735333
- [18] P. Schneider, Iwasawa L-functions of varieties over algebraic number fields. A first approach. Inventiones Math.71 (1983), 251-293. Zbl0511.14010MR689645
- [19] P. Schneider, p-adic height pairings II. Inventiones Math.79 (1985), 329-374. Zbl0571.14021MR778132
- [20] P. Schneider, Arithmetic of formal groups and applications. I. Universal norm subgroups. Inventiones Math.87 (1987), 587-602. Zbl0608.14034MR874038
- [21] J.-P. Serre, Cohomologie Galoisienne. LNM 5 (cinquième édition), Springer, 1994. Zbl0812.12002MR1324577
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.