Iwasawa theory for elliptic curves over imaginary quadratic fields

Massimo Bertolini

Journal de théorie des nombres de Bordeaux (2001)

  • Volume: 13, Issue: 1, page 1-25
  • ISSN: 1246-7405

Abstract

top
Let E be an elliptic curve over , let K be an imaginary quadratic field, and let K be a p -extension of K . Given a set Σ of primes of K , containing the primes above p , and the primes of bad reduction for E , write K Σ for the maximal algebraic extension of K which is unramified outside Σ . This paper is devoted to the study of the structure of the cohomology groups H i ( K Σ / K , E p ) for i = 1 , 2 , and of the p -primary Selmer group Sel p ( E / K ) , viewed as discrete modules over the Iwasawa algebra of K / K .

How to cite

top

Bertolini, Massimo. "Iwasawa theory for elliptic curves over imaginary quadratic fields." Journal de théorie des nombres de Bordeaux 13.1 (2001): 1-25. <http://eudml.org/doc/248714>.

@article{Bertolini2001,
abstract = {Let $E$ be an elliptic curve over $\mathbb \{Q\}$, let $K$ be an imaginary quadratic field, and let $K_ \infty $ be a $\mathbb \{Z\}_p$-extension of $K$. Given a set $\Sigma $ of primes of $K$, containing the primes above $p$, and the primes of bad reduction for $E$, write $K_\Sigma $ for the maximal algebraic extension of $K$ which is unramified outside $\Sigma $. This paper is devoted to the study of the structure of the cohomology groups $H^i (K_\Sigma / K_\infty , E_\{p^ \infty \})$ for $i = 1, 2,$ and of the $p$-primary Selmer group Sel$_\{p^ \infty \}(E / K_\infty )$, viewed as discrete modules over the Iwasawa algebra of $K_\infty / K.$},
author = {Bertolini, Massimo},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {elliptic curve; Selmer group; anticyclotomic extension; Iwasawa theory; complex multiplication; Heegner points},
language = {eng},
number = {1},
pages = {1-25},
publisher = {Université Bordeaux I},
title = {Iwasawa theory for elliptic curves over imaginary quadratic fields},
url = {http://eudml.org/doc/248714},
volume = {13},
year = {2001},
}

TY - JOUR
AU - Bertolini, Massimo
TI - Iwasawa theory for elliptic curves over imaginary quadratic fields
JO - Journal de théorie des nombres de Bordeaux
PY - 2001
PB - Université Bordeaux I
VL - 13
IS - 1
SP - 1
EP - 25
AB - Let $E$ be an elliptic curve over $\mathbb {Q}$, let $K$ be an imaginary quadratic field, and let $K_ \infty $ be a $\mathbb {Z}_p$-extension of $K$. Given a set $\Sigma $ of primes of $K$, containing the primes above $p$, and the primes of bad reduction for $E$, write $K_\Sigma $ for the maximal algebraic extension of $K$ which is unramified outside $\Sigma $. This paper is devoted to the study of the structure of the cohomology groups $H^i (K_\Sigma / K_\infty , E_{p^ \infty })$ for $i = 1, 2,$ and of the $p$-primary Selmer group Sel$_{p^ \infty }(E / K_\infty )$, viewed as discrete modules over the Iwasawa algebra of $K_\infty / K.$
LA - eng
KW - elliptic curve; Selmer group; anticyclotomic extension; Iwasawa theory; complex multiplication; Heegner points
UR - http://eudml.org/doc/248714
ER -

References

top
  1. [1] M. Bertolini, Selmer groups and Heegner points in anticyclotomic Zp-extensions. Compositio Math.99 (1995), 153-182. Zbl0862.11043MR1351834
  2. [2] M. Bertolini, An annihilator for the p-Selmer group by means of Heegner points. Atti Acc. Naz. Lincei, Classe di Sc. Fis., Mat. e Nat., Rendiconti Lincei, Mat. e Appl., Serie 9, Vol. 5, Fasc. 2 (1994), 129-140. Zbl0853.11049MR1292568
  3. [3] M. Bertolini, Growth of Mordell-Weil groups in anticyclotomic towers. Symposia Mathematica, Proceedings of the Symposium in Arithmetic Geometry, Cortona1994, E. Bombieri, et al., eds., Cambridge Univ. Press, to appear. Zbl0911.14010MR1472490
  4. [4] M. Bertolini, H. Darmon, Derived heights and generalized Mazur-Tate regulators. Duke Math. Journal76 (1994), 75-111. Zbl0853.14013MR1301187
  5. [5] M. Bertolini, H. Darmon, Heegner points on Mumford-Tate curves. Inventiones Math., to appear. Zbl0882.11034
  6. [6] J. Coates, R. Greenberg, Kummer theory for Abelian varieties over local fields. Inventiones Math.124 (1996), 129-174. Zbl0858.11032MR1369413
  7. [7] J. Coates, G. McConnell, Iwasawa theory of modular elliptic curves of analytic rank at most 1. J. London Math. Soc. (2) 50 (1994), 243-264. Zbl0864.11053MR1291735
  8. [8] R. Greenberg, Iwasawa theory for p-adic representations. Algebraic Number Theory- in honor of K. Iwasawa, J. Coates et al., editors, Advanced Studies in Pure Mathematics, 1989, Academic Press. Zbl0739.11045MR1097613
  9. [9] S. Lang, Cyclotomic fields I and II (Combined second edition,)GTM121, 1990, Springer. Zbl0704.11038MR1029028
  10. [10] B. Mazur, Rational points of Abelian Varieties with values in towers of number fields. Inventiones Math.18 (1972), 183-266. Zbl0245.14015MR444670
  11. [11] B. Mazur, Modular Curves and Arithmetic, Proc. Int. Cong. of Math.1983, Warszawa. Zbl0597.14023
  12. [12] B. Mazur, Elliptic curves and towers of number fields. Unpublished manuscript. 
  13. [13] J-S. Milne, Arithmetic duality theorems. Perspective in Math., Academic Press, 1986. Zbl0613.14019MR881804
  14. [14] B. Perrin-Riou, Fonctions L p-adiques, Théorie d'Iwasawa et points de Heegner. Bull. Soc. Math. de France115 (1987), 399-456. Zbl0664.12010MR928018
  15. [15] B. Perrin-Riou, Théorie d'Iwasawa et hauteurs p-adiques. Inventiones Math.109 (1992), 137-185. Zbl0781.14013MR1168369
  16. [16] D. Rohrlich, On L-functions of elliptic curves and anti-cyclotomic towers. Inventiones Math.64 (1984), 393-408. Zbl0565.14008
  17. [17] D. Rohrlich, On L-functions of elliptic curves and cyclotomic towers. Inventiones Math.75 (1984), 409-423. Zbl0565.14006MR735333
  18. [18] P. Schneider, Iwasawa L-functions of varieties over algebraic number fields. A first approach. Inventiones Math.71 (1983), 251-293. Zbl0511.14010MR689645
  19. [19] P. Schneider, p-adic height pairings II. Inventiones Math.79 (1985), 329-374. Zbl0571.14021MR778132
  20. [20] P. Schneider, Arithmetic of formal groups and applications. I. Universal norm subgroups. Inventiones Math.87 (1987), 587-602. Zbl0608.14034MR874038
  21. [21] J.-P. Serre, Cohomologie Galoisienne. LNM 5 (cinquième édition), Springer, 1994. Zbl0812.12002MR1324577

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.