Left cells and domino tableaux in classical Weyl groups

William M. McGovern

Compositio Mathematica (1996)

  • Volume: 101, Issue: 1, page 77-98
  • ISSN: 0010-437X

How to cite

top

McGovern, William M.. "Left cells and domino tableaux in classical Weyl groups." Compositio Mathematica 101.1 (1996): 77-98. <http://eudml.org/doc/90438>.

@article{McGovern1996,
author = {McGovern, William M.},
journal = {Compositio Mathematica},
keywords = {classical Weyl groups; left cells; asymptotic Hecke algebra; representations; semisimple Lie algebras},
language = {eng},
number = {1},
pages = {77-98},
publisher = {Kluwer Academic Publishers},
title = {Left cells and domino tableaux in classical Weyl groups},
url = {http://eudml.org/doc/90438},
volume = {101},
year = {1996},
}

TY - JOUR
AU - McGovern, William M.
TI - Left cells and domino tableaux in classical Weyl groups
JO - Compositio Mathematica
PY - 1996
PB - Kluwer Academic Publishers
VL - 101
IS - 1
SP - 77
EP - 98
LA - eng
KW - classical Weyl groups; left cells; asymptotic Hecke algebra; representations; semisimple Lie algebras
UR - http://eudml.org/doc/90438
ER -

References

top
  1. 1 Barbasch, D.: The unitary dual for complex classical groups, Inv. Math.96 (1989), 103-176. Zbl0692.22006MR981739
  2. 2 Barbasch, D.: Representations with maximal primitive ideal, in Operator algebras, unitary representations, enveloping algebras, and invariant theory, Progress in Math., #92 (A. Connes et al., eds.), Birkhauser, Boston, (1990), 317-333. Zbl0732.22013MR1103595
  3. 3 Barbasch, D. and Vogan, D.A.: Primitive ideals and orbital integrals of complex classical groups, Math. Ann.259 (1982), 153-199. Zbl0489.22010MR656661
  4. 4 Barbasch, D. and Vogan, D.A.: Unipotent representations of complex semisimple Lie groups, Ann. of Math.121 (1985), 41-110. Zbl0582.22007MR782556
  5. 5 Collingwood, D. and McGovern, W.: Nilpotent Orbits in Semisimple Lie Algebras, Chapman and Hall, London, (1993). Zbl0972.17008MR1251060
  6. 6 Duflo, M.: Sur la classification des idéaux primitifs dans l'algèbre enveloppante d'une algèbre de Lie semisimple, Ann. of Math.105 (1977), 107-120. Zbl0346.17011MR430005
  7. 7 Garfinkle, D.: On the classification of primitive ideals for complex classical Lie algebras, I, Comp. Math.75 (1990), 135-169. Zbl0737.17003MR1065203
  8. 8 Garfinkle, D.: On the classification of primitive ideals for complex classical Lie algebras, II, Comp. Math.81 (1992), 307-336. Zbl0762.17007MR1149172
  9. 9 Garfinkle, D.: On the classification of primitive ideals for complex classical Lie algebras, III, Comp. Math.88 (1993), 187-234. Zbl0798.17007MR1237920
  10. 10 Garfinkle, D.: On the classification of primitive ideals for complex classical Lie algebras, IV, in preparation. Zbl0762.17007
  11. 11 Garfinkle, D. and Vogan, D.A.: On the structure of Kazhdan-Lusztig cells for branched Dynkin diagrams, J. Alg.153 (1992), 91-120. Zbl0786.22024MR1195408
  12. 12 Garsia, A.M. and McLarnan, T.J.: Relations between Young's natural and the Kazhdan-Lusztig representations of Sn, Adv. Math.69 (1988), 32-92. Zbl0657.20014MR937317
  13. 13 Jantzen, J.C.: Einhüllenden Algebren halbeinfacher Lie-Algebren, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 3, Springer-Verlag, New York, (1983). Zbl0541.17001MR721170
  14. 14 Joseph, A.: A characteristic variety for the primitive spectrum of a semisimple Lie algebra, preprint, 1976. Short version in Non-Commutative Harmonic Analysis, Proceedings, Marseille-Luminy, Springer Lecture Notes #587, Springer-Verlag, New York, (1977), 102-116. Zbl0374.17004MR450350
  15. 15 Joseph, A.: W-module structure in the primitive spectrum of the enveloping algebra of a semisimple Lie algebra, in Non-Commutative Harmonic Analysis, Proceedings, Marseille-Luminy, Springer Lecture Notes #728, Springer-Verlag, New York, (1979), 116-135. Zbl0422.17004MR548328
  16. 16 Joseph, A.: Towards the Jantzen conjecture II, Comp. Math.40 (1980), 69-78. Zbl0424.17005MR594481
  17. 17 Joseph, A.: Goldie rank in the enveloping algebra of a semisimple Lie algebra III, J. Alg.73 (1981), 295-326. Zbl0482.17002MR640039
  18. 18 Joseph, A.: On the cyclicity of vectors associated with Duflo involutions, in Non-Commutative Harmonic Analysis, Proceedings, Marseille-Luminy, Springer Lecture Notes #1243, Springer-Verlag, New York, (1985), 144-188. Zbl0621.17006MR897541
  19. 19 Joseph, A.: A sum rule for scale factors in Goldie rank polynomials, J. Alg.118 (1988), 276-311. Zbl0699.17014MR969673
  20. 20 Kazhdan, D. and Lusztig, G.: Representations of Coxeter groups and Hecke algebras, Inv. Math.53, (1979), 165-184. Zbl0499.20035MR560412
  21. 21 Lusztig, G.: Irreducible representations of finite classical groups, Inv. Math.43 (1977), 125-175. Zbl0372.20033MR463275
  22. 22 Lusztig, G.: A class of irreducible representations of a Weyl group II, Indag. Math.44 (1982), 219-226. Zbl0511.20034MR662657
  23. 23 Lusztig, G.: Characters of a Reductive Group over a Finite Field, Annals of Math. Studies, #107, Princeton University Press, Princeton, (1984). Zbl0556.20033MR742472
  24. 24 Lusztig, G.: Intersection cohomology complexes on a reductive group, Inv. Math.75 (1984), 205-272. Zbl0547.20032MR732546
  25. 25 Lusztig, G.: Cells in affine Weyl groups, Adv. Stud. Pure Math.6 (1985), 255-287. Zbl0569.20032MR803338
  26. 26 Lusztig, G.: Sur les cellules gauches des groupes de Weyl. C. R. Acad. Sci. Paris, Ser. A302, (1986), 5-8. Zbl0615.20020MR827096
  27. 27 Lusztig, G.: Cells in affine Weyl groups II, J. Alg.109 (1987), 536-548. Zbl0625.20032MR902967
  28. 28 Lusztig, G.: Leading coefficients of character values of Hecke algebras, Proc. Symp. Pure Math.47 vol. 2 (1987), 235-262. Zbl0657.20037MR933415
  29. 29 Lusztig, G.: Cells in affine Weyl groups III, J. Fac. Sci. Univ. Tokyo, Sect. IA Math.34, (1987), 223-243. Zbl0631.20028MR914020
  30. 30 Mayer, S.J.: On the characters of the Weyl group of type C, J. Alg.33 (1975), 59-67. Zbl0296.20004MR354840
  31. 31 Mayer, S.J.: On the characters of the Weyl group of type D, Math. Proc. Camb. Phil. Soc.77 (1975), 259-264. Zbl0296.20003MR364479
  32. 32 McGovern, W.: Completely prime maximal ideals and quantization, Mem. Amer Math. Soc.519 (1994). Zbl0820.17010MR1191608
  33. 33 McGovern, W.: Goldie ranks of hook ideals in typeA. Comm. Alg.23 (1995), 955-963. Zbl0824.17010MR1316743
  34. 34 Vogan, D.A.: A generalized τ-invariant for the primitive spectrum of a semisimple Lie algebra, Math. Ann.242 (1979), 209-224 Zbl0387.17007
  35. 35 Vogan, D.A.: Ordering of the primitive spectrum of a semisimple Lie algebra, Math. Ann.248 (1980), 195-203. Zbl0414.17006MR575938

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.