Left cells and domino tableaux in classical Weyl groups
Compositio Mathematica (1996)
- Volume: 101, Issue: 1, page 77-98
- ISSN: 0010-437X
Access Full Article
topHow to cite
topMcGovern, William M.. "Left cells and domino tableaux in classical Weyl groups." Compositio Mathematica 101.1 (1996): 77-98. <http://eudml.org/doc/90438>.
@article{McGovern1996,
author = {McGovern, William M.},
journal = {Compositio Mathematica},
keywords = {classical Weyl groups; left cells; asymptotic Hecke algebra; representations; semisimple Lie algebras},
language = {eng},
number = {1},
pages = {77-98},
publisher = {Kluwer Academic Publishers},
title = {Left cells and domino tableaux in classical Weyl groups},
url = {http://eudml.org/doc/90438},
volume = {101},
year = {1996},
}
TY - JOUR
AU - McGovern, William M.
TI - Left cells and domino tableaux in classical Weyl groups
JO - Compositio Mathematica
PY - 1996
PB - Kluwer Academic Publishers
VL - 101
IS - 1
SP - 77
EP - 98
LA - eng
KW - classical Weyl groups; left cells; asymptotic Hecke algebra; representations; semisimple Lie algebras
UR - http://eudml.org/doc/90438
ER -
References
top- 1 Barbasch, D.: The unitary dual for complex classical groups, Inv. Math.96 (1989), 103-176. Zbl0692.22006MR981739
- 2 Barbasch, D.: Representations with maximal primitive ideal, in Operator algebras, unitary representations, enveloping algebras, and invariant theory, Progress in Math., #92 (A. Connes et al., eds.), Birkhauser, Boston, (1990), 317-333. Zbl0732.22013MR1103595
- 3 Barbasch, D. and Vogan, D.A.: Primitive ideals and orbital integrals of complex classical groups, Math. Ann.259 (1982), 153-199. Zbl0489.22010MR656661
- 4 Barbasch, D. and Vogan, D.A.: Unipotent representations of complex semisimple Lie groups, Ann. of Math.121 (1985), 41-110. Zbl0582.22007MR782556
- 5 Collingwood, D. and McGovern, W.: Nilpotent Orbits in Semisimple Lie Algebras, Chapman and Hall, London, (1993). Zbl0972.17008MR1251060
- 6 Duflo, M.: Sur la classification des idéaux primitifs dans l'algèbre enveloppante d'une algèbre de Lie semisimple, Ann. of Math.105 (1977), 107-120. Zbl0346.17011MR430005
- 7 Garfinkle, D.: On the classification of primitive ideals for complex classical Lie algebras, I, Comp. Math.75 (1990), 135-169. Zbl0737.17003MR1065203
- 8 Garfinkle, D.: On the classification of primitive ideals for complex classical Lie algebras, II, Comp. Math.81 (1992), 307-336. Zbl0762.17007MR1149172
- 9 Garfinkle, D.: On the classification of primitive ideals for complex classical Lie algebras, III, Comp. Math.88 (1993), 187-234. Zbl0798.17007MR1237920
- 10 Garfinkle, D.: On the classification of primitive ideals for complex classical Lie algebras, IV, in preparation. Zbl0762.17007
- 11 Garfinkle, D. and Vogan, D.A.: On the structure of Kazhdan-Lusztig cells for branched Dynkin diagrams, J. Alg.153 (1992), 91-120. Zbl0786.22024MR1195408
- 12 Garsia, A.M. and McLarnan, T.J.: Relations between Young's natural and the Kazhdan-Lusztig representations of Sn, Adv. Math.69 (1988), 32-92. Zbl0657.20014MR937317
- 13 Jantzen, J.C.: Einhüllenden Algebren halbeinfacher Lie-Algebren, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 3, Springer-Verlag, New York, (1983). Zbl0541.17001MR721170
- 14 Joseph, A.: A characteristic variety for the primitive spectrum of a semisimple Lie algebra, preprint, 1976. Short version in Non-Commutative Harmonic Analysis, Proceedings, Marseille-Luminy, Springer Lecture Notes #587, Springer-Verlag, New York, (1977), 102-116. Zbl0374.17004MR450350
- 15 Joseph, A.: W-module structure in the primitive spectrum of the enveloping algebra of a semisimple Lie algebra, in Non-Commutative Harmonic Analysis, Proceedings, Marseille-Luminy, Springer Lecture Notes #728, Springer-Verlag, New York, (1979), 116-135. Zbl0422.17004MR548328
- 16 Joseph, A.: Towards the Jantzen conjecture II, Comp. Math.40 (1980), 69-78. Zbl0424.17005MR594481
- 17 Joseph, A.: Goldie rank in the enveloping algebra of a semisimple Lie algebra III, J. Alg.73 (1981), 295-326. Zbl0482.17002MR640039
- 18 Joseph, A.: On the cyclicity of vectors associated with Duflo involutions, in Non-Commutative Harmonic Analysis, Proceedings, Marseille-Luminy, Springer Lecture Notes #1243, Springer-Verlag, New York, (1985), 144-188. Zbl0621.17006MR897541
- 19 Joseph, A.: A sum rule for scale factors in Goldie rank polynomials, J. Alg.118 (1988), 276-311. Zbl0699.17014MR969673
- 20 Kazhdan, D. and Lusztig, G.: Representations of Coxeter groups and Hecke algebras, Inv. Math.53, (1979), 165-184. Zbl0499.20035MR560412
- 21 Lusztig, G.: Irreducible representations of finite classical groups, Inv. Math.43 (1977), 125-175. Zbl0372.20033MR463275
- 22 Lusztig, G.: A class of irreducible representations of a Weyl group II, Indag. Math.44 (1982), 219-226. Zbl0511.20034MR662657
- 23 Lusztig, G.: Characters of a Reductive Group over a Finite Field, Annals of Math. Studies, #107, Princeton University Press, Princeton, (1984). Zbl0556.20033MR742472
- 24 Lusztig, G.: Intersection cohomology complexes on a reductive group, Inv. Math.75 (1984), 205-272. Zbl0547.20032MR732546
- 25 Lusztig, G.: Cells in affine Weyl groups, Adv. Stud. Pure Math.6 (1985), 255-287. Zbl0569.20032MR803338
- 26 Lusztig, G.: Sur les cellules gauches des groupes de Weyl. C. R. Acad. Sci. Paris, Ser. A302, (1986), 5-8. Zbl0615.20020MR827096
- 27 Lusztig, G.: Cells in affine Weyl groups II, J. Alg.109 (1987), 536-548. Zbl0625.20032MR902967
- 28 Lusztig, G.: Leading coefficients of character values of Hecke algebras, Proc. Symp. Pure Math.47 vol. 2 (1987), 235-262. Zbl0657.20037MR933415
- 29 Lusztig, G.: Cells in affine Weyl groups III, J. Fac. Sci. Univ. Tokyo, Sect. IA Math.34, (1987), 223-243. Zbl0631.20028MR914020
- 30 Mayer, S.J.: On the characters of the Weyl group of type C, J. Alg.33 (1975), 59-67. Zbl0296.20004MR354840
- 31 Mayer, S.J.: On the characters of the Weyl group of type D, Math. Proc. Camb. Phil. Soc.77 (1975), 259-264. Zbl0296.20003MR364479
- 32 McGovern, W.: Completely prime maximal ideals and quantization, Mem. Amer Math. Soc.519 (1994). Zbl0820.17010MR1191608
- 33 McGovern, W.: Goldie ranks of hook ideals in typeA. Comm. Alg.23 (1995), 955-963. Zbl0824.17010MR1316743
- 34 Vogan, D.A.: A generalized τ-invariant for the primitive spectrum of a semisimple Lie algebra, Math. Ann.242 (1979), 209-224 Zbl0387.17007
- 35 Vogan, D.A.: Ordering of the primitive spectrum of a semisimple Lie algebra, Math. Ann.248 (1980), 195-203. Zbl0414.17006MR575938
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.