On some modular representations of affine Kac-Moody algebras at the critical level

Olivier Mathieu

Compositio Mathematica (1996)

  • Volume: 102, Issue: 3, page 305-312
  • ISSN: 0010-437X

How to cite

top

Mathieu, Olivier. "On some modular representations of affine Kac-Moody algebras at the critical level." Compositio Mathematica 102.3 (1996): 305-312. <http://eudml.org/doc/90455>.

@article{Mathieu1996,
author = {Mathieu, Olivier},
journal = {Compositio Mathematica},
keywords = {affine Kac-Moody algebras; modular representations; critical level; Steinberg module; Wakimoto module; character formula; highest-weight modules},
language = {eng},
number = {3},
pages = {305-312},
publisher = {Kluwer Academic Publishers},
title = {On some modular representations of affine Kac-Moody algebras at the critical level},
url = {http://eudml.org/doc/90455},
volume = {102},
year = {1996},
}

TY - JOUR
AU - Mathieu, Olivier
TI - On some modular representations of affine Kac-Moody algebras at the critical level
JO - Compositio Mathematica
PY - 1996
PB - Kluwer Academic Publishers
VL - 102
IS - 3
SP - 305
EP - 312
LA - eng
KW - affine Kac-Moody algebras; modular representations; critical level; Steinberg module; Wakimoto module; character formula; highest-weight modules
UR - http://eudml.org/doc/90455
ER -

References

top
  1. [DGK] Deodhar, V., Gabber, O. and Kac, V.: Structure of some categories of representations of infinite dimensional Lie algebras, Adv. in Math.89 (1987) 247-270. Zbl0491.17008MR663417
  2. [FF1] Feigin, B. and Frenkel, E.: The family of representations of affine Lie algebras, Russian Math. Survey43 (1988) 221-222. Zbl0668.17015MR971497
  3. [FF2] Feigin, B. and Frenkel, E.: Affine Kac-Moody algebras and semi-infinite flag, Comm. Math. Phys.128 (1990) 161-189. Zbl0722.17019MR1042449
  4. [FF3] Feigin, B. and Frenkel, E.: Affine Kac-Moody algebras at the critical level and Gelfand-Dikii algebras, Int. J. Math. Phys. A7 (1992) 197-215. Zbl0925.17022MR1187549
  5. [F] Frenkel, E.: Affine Kac-Moody Algebras at the Critical Level and Quantum Drinfeld-Sokolov Reduction, Harvard Thesis 1990. 
  6. [GW] Goodman, R. and Wallach, N.: Higher order Sugawara operators for affine Kac-Moody algebras, Trans. A.M.S.315 (1989) 1-66. Zbl0676.17013MR958893
  7. [H] Hayashi, T.: Sugawara operators and Kac-Kazdhan conjecture, Inv. Math.94 (1988) 13-52. Zbl0674.17005MR958588
  8. [J] Jacobson, N.: Lie Algebras, New York, Interscience (1962). Zbl0121.27504MR143793
  9. [K] Kac, V.G.: Infinite dimensional Lie algebras, Birkhauser, Prog. in Math.44 (1983). Zbl0537.17001MR739850
  10. [KK] Kac, V.G. and Kazdhan, D.: Structure of representations with highest weight of infinite dimensional Lie algebras, Adv. Math.34 (1979) 97-108. Zbl0427.17011MR547842
  11. [Ku] Ku, J.M.: Structure of the module M(-p) for euclidean Lie algebras, J. ofAlg.124 (1989) 367-387. Zbl0693.17013MR1011602
  12. [M1] Malikov, F.: Singular vectors corresponding to imaginary roots in Verma modules over affine Lie algebras, Math. Scan.66 (1986) 73-90. Zbl0687.17009MR1060899
  13. [Mt1] Mathieu, O.: Formules de caractères pour les algèbres de Kac-Moody générales, Astérisque (1988) 159-160. Zbl0683.17010MR980506
  14. [Mt2] Mathieu, O.: Construction du groupe de Kac-Moody et applications, Comp. Math.69 (1989) 37-60. Zbl0678.17012MR986812
  15. [Mt3] Mathieu, O.: Bicontinuity of the Dixmier map, Journal of the A.M.S.4 (1991) 837-863. Zbl0743.17013MR1115787
  16. [Mt 4] Mathieu, O.: On the endomorphism ring of some modular Verma modules at the critical level, Preprint. 
  17. [T 1] Tits, J.: Groups and group functions attached to Kac-Moody data, Springer-Verlag, Lect. Notes in Math.111 (1985) 193-223. Zbl0572.17010MR797422
  18. [T 2] Tits, J.: Groupes et Algèbres de Kac-Moody, Résumé de cours, Collége de France (1982-1983). 
  19. [Wt] Wakimoto, M.: Fock representation of the affine Lie algebra A1(1), Comm. Math. Phys.104 (1986) 604-609. Zbl0587.17009MR841673

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.