A mathematical proof of a formula of Aspinwall and Morrison

Claire Voisin

Compositio Mathematica (1996)

  • Volume: 104, Issue: 2, page 135-151
  • ISSN: 0010-437X

How to cite

top

Voisin, Claire. "A mathematical proof of a formula of Aspinwall and Morrison." Compositio Mathematica 104.2 (1996): 135-151. <http://eudml.org/doc/90484>.

@article{Voisin1996,
author = {Voisin, Claire},
journal = {Compositio Mathematica},
keywords = {Gromov-Witten invariants; Calabi-Yau threefold; number of rational curves},
language = {eng},
number = {2},
pages = {135-151},
publisher = {Kluwer Academic Publishers},
title = {A mathematical proof of a formula of Aspinwall and Morrison},
url = {http://eudml.org/doc/90484},
volume = {104},
year = {1996},
}

TY - JOUR
AU - Voisin, Claire
TI - A mathematical proof of a formula of Aspinwall and Morrison
JO - Compositio Mathematica
PY - 1996
PB - Kluwer Academic Publishers
VL - 104
IS - 2
SP - 135
EP - 151
LA - eng
KW - Gromov-Witten invariants; Calabi-Yau threefold; number of rational curves
UR - http://eudml.org/doc/90484
ER -

References

top
  1. 1 Aspinwall, P.S. and Morrison, D.R.: Topological field theory and rational curves, Comm. in Math. Phys., vol. 151 (1993), 245-262. Zbl0776.53043MR1204770
  2. 2 Audin, M. and Lafontaine, J. (eds): Holomorphic curves in symplectic geometry, Progress in Math.117, Birkhaüser, 1994. Zbl0802.53001MR1274923
  3. 3 Candelas, P., De la Ossa, X.C., Green, P.S. and Parkes, L.: A pair of Calabi-Yau manifolds as an exactly soluble superconformal field theory, Nucl. Phys. B359 (1991), 21-74. Zbl1098.32506
  4. 4 Gromov, M.: Pseudoholomorphic curves in symplectic manifolds, Invent. Math.82 (1985), 307-347. Zbl0592.53025MR809718
  5. 5 Kontsevich, M.: Enumeration of rational curves via torus action, In: Proceedings of the conference 'The moduli space of curves', Eds Dijgraaf, Faber, Van der Geer, Birkhaüser, 1995. Zbl0885.14028MR1363062
  6. 6 Kontsevich, M.: Homological algebra of mirror symmetry, In: Proceedings of the International Congress of Mathematicians, Zurich, 1994, Birkhaüser, 1995. Zbl0846.53021MR1403918
  7. 7 Kontsevich, M. and Manin, Yu.: Gromov-Witten classes, quantum cohomology and enumerative geometry, Communications in Math. Physics, vol. 164 (1994), 525-562. Zbl0853.14020MR1291244
  8. 8 Laufer, H.B.: On CP1 as an exceptional set, in Recent progress in several complex variables, 261-275, Princeton University Press, 1981. Zbl0523.32007MR627762
  9. 9 McDuff, D. and Salamon, D.: J-holomorphic curves and quantum cohomology, University Lecture Series, vol. 6, AMS, 1994. Zbl0809.53002
  10. 10 Manin, Yu.: Generating functions in Algebraic Geometry and Sums over Trees, MPI preprint 94-66, Proceedings of the conference 'The moduli space of curves', Eds Dijgraaf, Faber, Van der Geer, Birkhaüser, 1995. MR1363064
  11. 11 Morrison, D.: Mirror symmetry and rational curves on quintic threefolds, Journal of the AMS, vol. 6 (1), 223-241. Zbl0843.14005MR1179538
  12. 12 Ruan, Y. and Tian, G.: A mathematical theory of quantum cohomology, preprint 1994. MR1266766
  13. 13 Vafa, C.: Topological mirrors and quantum rings, in [16]. Zbl0827.58073MR1191421
  14. 14 Voisin, C.: Symétrie miroir, Panoramas et Synthèses, n° 2, 1996, Societé Mathematique de France. Zbl0849.14001MR1396787
  15. 15 Witten, E.: Mirror manifolds and topological field theory, in [16], 120-158. Zbl0834.58013MR1191422
  16. 16 Yau, S. T. (ed.): Essays on mirror manifolds, International Press, Hong Kong, 1992. Zbl0816.00010

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.