A mathematical proof of a formula of Aspinwall and Morrison
Compositio Mathematica (1996)
- Volume: 104, Issue: 2, page 135-151
- ISSN: 0010-437X
Access Full Article
topHow to cite
topVoisin, Claire. "A mathematical proof of a formula of Aspinwall and Morrison." Compositio Mathematica 104.2 (1996): 135-151. <http://eudml.org/doc/90484>.
@article{Voisin1996,
author = {Voisin, Claire},
journal = {Compositio Mathematica},
keywords = {Gromov-Witten invariants; Calabi-Yau threefold; number of rational curves},
language = {eng},
number = {2},
pages = {135-151},
publisher = {Kluwer Academic Publishers},
title = {A mathematical proof of a formula of Aspinwall and Morrison},
url = {http://eudml.org/doc/90484},
volume = {104},
year = {1996},
}
TY - JOUR
AU - Voisin, Claire
TI - A mathematical proof of a formula of Aspinwall and Morrison
JO - Compositio Mathematica
PY - 1996
PB - Kluwer Academic Publishers
VL - 104
IS - 2
SP - 135
EP - 151
LA - eng
KW - Gromov-Witten invariants; Calabi-Yau threefold; number of rational curves
UR - http://eudml.org/doc/90484
ER -
References
top- 1 Aspinwall, P.S. and Morrison, D.R.: Topological field theory and rational curves, Comm. in Math. Phys., vol. 151 (1993), 245-262. Zbl0776.53043MR1204770
- 2 Audin, M. and Lafontaine, J. (eds): Holomorphic curves in symplectic geometry, Progress in Math.117, Birkhaüser, 1994. Zbl0802.53001MR1274923
- 3 Candelas, P., De la Ossa, X.C., Green, P.S. and Parkes, L.: A pair of Calabi-Yau manifolds as an exactly soluble superconformal field theory, Nucl. Phys. B359 (1991), 21-74. Zbl1098.32506
- 4 Gromov, M.: Pseudoholomorphic curves in symplectic manifolds, Invent. Math.82 (1985), 307-347. Zbl0592.53025MR809718
- 5 Kontsevich, M.: Enumeration of rational curves via torus action, In: Proceedings of the conference 'The moduli space of curves', Eds Dijgraaf, Faber, Van der Geer, Birkhaüser, 1995. Zbl0885.14028MR1363062
- 6 Kontsevich, M.: Homological algebra of mirror symmetry, In: Proceedings of the International Congress of Mathematicians, Zurich, 1994, Birkhaüser, 1995. Zbl0846.53021MR1403918
- 7 Kontsevich, M. and Manin, Yu.: Gromov-Witten classes, quantum cohomology and enumerative geometry, Communications in Math. Physics, vol. 164 (1994), 525-562. Zbl0853.14020MR1291244
- 8 Laufer, H.B.: On CP1 as an exceptional set, in Recent progress in several complex variables, 261-275, Princeton University Press, 1981. Zbl0523.32007MR627762
- 9 McDuff, D. and Salamon, D.: J-holomorphic curves and quantum cohomology, University Lecture Series, vol. 6, AMS, 1994. Zbl0809.53002
- 10 Manin, Yu.: Generating functions in Algebraic Geometry and Sums over Trees, MPI preprint 94-66, Proceedings of the conference 'The moduli space of curves', Eds Dijgraaf, Faber, Van der Geer, Birkhaüser, 1995. MR1363064
- 11 Morrison, D.: Mirror symmetry and rational curves on quintic threefolds, Journal of the AMS, vol. 6 (1), 223-241. Zbl0843.14005MR1179538
- 12 Ruan, Y. and Tian, G.: A mathematical theory of quantum cohomology, preprint 1994. MR1266766
- 13 Vafa, C.: Topological mirrors and quantum rings, in [16]. Zbl0827.58073MR1191421
- 14 Voisin, C.: Symétrie miroir, Panoramas et Synthèses, n° 2, 1996, Societé Mathematique de France. Zbl0849.14001MR1396787
- 15 Witten, E.: Mirror manifolds and topological field theory, in [16], 120-158. Zbl0834.58013MR1191422
- 16 Yau, S. T. (ed.): Essays on mirror manifolds, International Press, Hong Kong, 1992. Zbl0816.00010
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.