Partial exact controllability and exponential stability in higher-dimensional linear thermoelasticity

Weijiu Liu

ESAIM: Control, Optimisation and Calculus of Variations (1998)

  • Volume: 3, page 23-48
  • ISSN: 1292-8119

How to cite

top

Liu, Weijiu. "Partial exact controllability and exponential stability in higher-dimensional linear thermoelasticity." ESAIM: Control, Optimisation and Calculus of Variations 3 (1998): 23-48. <http://eudml.org/doc/90522>.

@article{Liu1998,
author = {Liu, Weijiu},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {exponential stability; exact controllability; linear thermoelasticity; boundary control; velocity feedback},
language = {eng},
pages = {23-48},
publisher = {EDP Sciences},
title = {Partial exact controllability and exponential stability in higher-dimensional linear thermoelasticity},
url = {http://eudml.org/doc/90522},
volume = {3},
year = {1998},
}

TY - JOUR
AU - Liu, Weijiu
TI - Partial exact controllability and exponential stability in higher-dimensional linear thermoelasticity
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 1998
PB - EDP Sciences
VL - 3
SP - 23
EP - 48
LA - eng
KW - exponential stability; exact controllability; linear thermoelasticity; boundary control; velocity feedback
UR - http://eudml.org/doc/90522
ER -

References

top
  1. [1] R. Adams: Sobolev spaces, Academic Press, New York, 1975. Zbl0314.46030MR450957
  2. [2] F. Alabau, V. Komornik: Boundary observability, controllability and stabilization of linear elastodynamic systems, SIAM J. Control Optim., to appear. Zbl0935.93037MR1665070
  3. [3] G. Avalos, I. Lasiecka: Exponential stability of a free thermoelastic system without mechanical dissipation, SIAM J. Math. Anal., to appear. Zbl0914.35139MR1617180
  4. [4] C. Bardos, G. Lebeau, J. Rauch: Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary, SIAM J. Control Optim. 30, 1992, 1024-1065. Zbl0786.93009MR1178650
  5. [5] J.A. Burns, Z.Y. Liu, S. Zheng: On the energy decay of a linear thermoelastic bar, J. Math. Anal. Appl., 179, 1993, 574-591. Zbl0803.35150MR1249839
  6. [6] E. Bisognin, V. Bisognin, G.P. Menzala, E. Zuazua: On exponential stability for the Von Kármán equations in the presence of thermal effects, Math. Methods Appl. Sci., to appear. Zbl0911.35022
  7. [7] G. Chen: Energy decay estimates and exact boundary value controllability for the wave equation in a bounded domain, J. Math. Pures Appl., 58, 1979, 249-273. Zbl0414.35044MR544253
  8. [8] S. Chirita: On the asymptotic partition of the energy in linear thermoelasticity, Quart. Appl. Math., 45, 1987, 327-340. Zbl0626.73002MR895103
  9. [9] C.M. Dafermos: On the existence and the asymptotic stability of solution to the equations of linear thermoelasticity, Arch. Rational Mech. Anal., 29, 1968, 241-271. Zbl0183.37701MR233539
  10. [10] G. Dassios, M. Grillakis: Dissipation rates and partition of energy in thermoelasticity, Arch. Rational Mech. Anal., 87, 1984, 49-91. Zbl0563.73007MR760319
  11. [11] P. Grisvard: Contrôlabilité exacte des solutions de l'équation des ondes en présence de singularités, J. Math. Pures Appl., 68, 1989, 215-259. Zbl0683.49012MR1010769
  12. [12] S.W. Hansen: Exponential energy decay in a linear thermoelastic rod, J. Math. Anal. Appl., 167, 1992, 429-442. Zbl0755.73012MR1168599
  13. [13] S.W. Hansen: Boundary control of a one-dimensional linear thermoelastic rod, SIAM J. Control Optim., 32, 1994, 1054-1074. Zbl0925.93090MR1280229
  14. [14] J.U. Kim: On the energy decay of a linear thermoelastic bar and plate, SIAM J. Math. Anal., 23, 1992, 889-899. Zbl0755.73013MR1166563
  15. [15] V. Komornik: Exact controllability and stabilization: The multiplier method, John Wiley & Sons, Masson, Paris, 1994. Zbl0937.93003MR1359765
  16. [16] V. Komornik, E. Zuazua: A direct method for the boundary stabilization of the wave equation, J. Math. Pures Appl., 69, 1990, 33-54. Zbl0636.93064MR1054123
  17. [17] A.D. Kovalenko: Thermoelasticity, basic theory and applications, Wolters-Noordhoff Publishing, Groningen, Netherlands, 1969. Zbl0209.56303
  18. [18] J. Lagnese: Decay of solutions of wave equations in a bounded region with boundary dissipation, J. Differential Equations, 50, 1983, 163-182. Zbl0536.35043MR719445
  19. [19] J. Lagnese: Boundary stabilization of linear elastodynamic systems, SIAM J. Control Optim., 21, 1983, 968-984. Zbl0531.93044MR719524
  20. [20] J. Lagnese: Boundary Stabilization of Thin Plates, in SIAM Studies in Applied Mathematics, 10, SIAM Publications, Philadelphia, 1989. Zbl0696.73034MR1061153
  21. [21] J. Lagnese: The reachability problem for thermoelastic plates, Arch. Rational Mech. Anal., 112 ( 1990), 223-267. Zbl0744.73028MR1076073
  22. [22] J. Lagnese, J-.L. Lions: Modelling analysis and control of thin plates, Masson, Paris, 1989. Zbl0662.73039MR953313
  23. [23] P. Lax, R.S. Phillips: Scattering theory, Revised Edition, Academic Press INC., Boston, 1989. Zbl0697.35004MR1037774
  24. [24] G. Lebeau, L. Robbiano: Contrôle exact de l'équation de la chaleur, Comm. Partial Differential Equations, 20 (1 & 2), 1995, 335-356. Zbl0819.35071MR1312710
  25. [25] G. Lebeau, E. Zuazua: Sur la décroissance non uniforme de l'énergie dans le système de la thermoélasticité linéaire, C. R. Acad. Sci. Paris Sér. I Math., 324, 1997409-415. Zbl0873.35011MR1440958
  26. [26] G. Lebeau, E. Zuazua: Null controllability of a system of linear thermoelasticity, Arch. Rational Mech. Anal., to appear. Zbl1064.93501MR1620510
  27. [27] G. Leugering: On boundary feedback stabilization of a viscoelastic membrance, Dynam. Stability Systems, 4, 1989, 71-79. Zbl0681.93051MR1023012
  28. [28] G. Leugering: On boundary feedback stabilization of a viscoelastic beam, Proc. Roy. Soc. Edinburgh Sect. A, 114, 1990, 57-69. Zbl0699.73037MR1051607
  29. [29] G. Leugering: A decomposition method for integro-partial differential equations and applications, J. Math. Pures Appl., 71, 1992, 561-587. Zbl0830.45009MR1193609
  30. [30] J.-L. Lions: Controlabilité exacte perturbations et stabilisation de systèmes distribues, Tome 2, Perturbations, Masson, Paris, 1988. Zbl0653.93003MR963060
  31. [31] J.-L. Lions, E. Magenes: Non-homogeneous boundary value problems and applications, vol. I and II, Springer-Verlag, New York, 1972. Zbl0223.35039MR350177
  32. [32] J.-L. Lions, E. Zuazua, A generic Uniqueness Resuit for the Stokes system and its control theoretical consequences, in Partial Differential Equations and Applications, P. Marcellini, G.T. Talenti, E. Vesentini, Eds., Lecture Notes in Pure and Applied Mathematics, 177, 221-235, Marcel Dekker, Inc., New York, 1996. Zbl0852.35112MR1371594
  33. [33] W.J. Liu, The exponential stabilization of the higher-dimensional linear thermoviscoelasticity, J. Math. Pures Appl., to appear. Zbl0922.35018
  34. [34] Z. Liu, M. Renardy: A note on the equations of thermoelastic plates, Appl. Math. Letters, 8, 1995, 1-6. Zbl0826.35048MR1356798
  35. [35] Z. Liu, S. Zheng: Exponential stability of the semigroup associated with a thermoelastic system, Quart. Appl. Math., LI, 1993, 535-545. Zbl0803.35014MR1233528
  36. [36] Z. Liu, S. Zheng: Exponential stability of the Kirchoff plate with thermal or viscoelastic damping, Quart. Appl. Math, to appear. Zbl0889.35015MR1466148
  37. [37] G.P. Menzala, E. Zuazua: Explicit exponential decay rates for solutions of von Kármán's system of thermoelastic plates, C. R. Acad. Sci. Paris Sér. I Math., 324, 1997, 49-54. Zbl0873.73042MR1435586
  38. [38] G.P. Menzala, E. Zuazua: Energy decay rates for the Von Kármán system of thermoelastic plates, Adv. Differential Equations, to appear. Zbl1008.35077
  39. [39] C.S. Morawetz: Exponential decay of solutions of the wave equation, Comm. Pure Appl. Math., 19, 1966, 439-444. Zbl0161.08002MR204828
  40. [40] K. Narukawa: Boundary value control of thermoelastic systems, Hiroshima Math. J., 13, 1983, 227-272. Zbl0531.73012MR707182
  41. [41] A. Pazy: Semigroup of linear operators and applications to partial differential equations, Springer-Verlag, New York, 1983. Zbl0516.47023MR710486
  42. [42] D.C. Pereira, G.P. Menzala: Exponential decay of solutions to a coupled system of equations of linear thermoelasticity, Comput. Appl. Math., 8, 1989, 193-204. Zbl0718.73012MR1067285
  43. [43] J.E.M. Rivera: Decomposition of the displacement vector field and decay rates in linear thermoelasticity, SIAM J. Math. Anal. 24, 1993, 390-406. Zbl0781.73012MR1205533
  44. [44] J.E.M. Rivera, R. Racke: Smoothing properties, decay and global existence of solutions to nonlinear coupled systems of thermoelastic type, SBF series No. 287, Bonn University, 1993. 
  45. [45] D.L. Russell: Exact boundary value controlability theorems for wave and heat processes in star-complemented regions, in Differential games and control theory, Roxin, Liu, and Sternberg, Eds., Marcel Dekker Inc., New York, 1974, 291-319. Zbl0308.93007MR467472
  46. [46] D.L. Russell: Decay rates for weakly damped systems in Hilbert space obtained with control-theoretic methods, J. Differential Equations, 19, 1975, 344-370. Zbl0326.93018MR425291
  47. [47] L. De Teresa, E. Zuazua: Controllability of the linear system of thermoelastic plates, Adv. Differential Equations, 1, 3, 1996, 369-402. Zbl0853.93017MR1401399
  48. [48] E. Zuazua: Controllability of the linear system of thermoelasticity, J. Math. Pures. Appl., 74, 1995, 291-315. Zbl0846.93008MR1341768

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.