Optimal control of an ill-posed elliptic semilinear equation with an exponential non linearity

E. Casas; O. Kavian; J.-P. Puel

ESAIM: Control, Optimisation and Calculus of Variations (1998)

  • Volume: 3, page 361-380
  • ISSN: 1292-8119

How to cite

top

Casas, E., Kavian, O., and Puel, J.-P.. "Optimal control of an ill-posed elliptic semilinear equation with an exponential non linearity." ESAIM: Control, Optimisation and Calculus of Variations 3 (1998): 361-380. <http://eudml.org/doc/90530>.

@article{Casas1998,
author = {Casas, E., Kavian, O., Puel, J.-P.},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {elliptic equation; exponential nonlinearity; existence of solutions; optimal control; necessary optimality conditions},
language = {eng},
pages = {361-380},
publisher = {EDP Sciences},
title = {Optimal control of an ill-posed elliptic semilinear equation with an exponential non linearity},
url = {http://eudml.org/doc/90530},
volume = {3},
year = {1998},
}

TY - JOUR
AU - Casas, E.
AU - Kavian, O.
AU - Puel, J.-P.
TI - Optimal control of an ill-posed elliptic semilinear equation with an exponential non linearity
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 1998
PB - EDP Sciences
VL - 3
SP - 361
EP - 380
LA - eng
KW - elliptic equation; exponential nonlinearity; existence of solutions; optimal control; necessary optimality conditions
UR - http://eudml.org/doc/90530
ER -

References

top
  1. [1] H. Amann: On the number of solutions of nonlinear equations in ordered Banach spaces. J. Func. Anal., 11 1972, 346-384. Zbl0244.47046MR358470
  2. [2] L. Boccardo, F. Murat: Almost everywhere convergence of the gradients of solutions to elliptic and parabolie equationsNonlinear Anal., Theory, Methods, Appl., 19 1992, 581-597. Zbl0783.35020MR1183665
  3. [3] S. Chandrasekhar: An introduction to the study of stellar structures. Dover Publishing Inc., 1985. Zbl0079.23901MR92663
  4. [4] M.G. Grandall, P.H. Rabinowitz: Some continuation and variational methods for positive solutions of nonlinear elliptic eigenvalue problems. Arch. Rational Mech. Anal., 58 1975, 207-218. Zbl0309.35057MR382848
  5. [5] D.A. Franck-Kamenetskii: Diffusion and heat transfer in chemical kinetics. Second edition, Plenum Press, 1969. 
  6. [6] Th. Gallouët, F. Mignot, J.P. Puel: Quelques résultats sur le problème -∆u = λeu. C. R. Acad. Sci. Paris, 307, série I, 1988, 289-292. Zbl0697.35048MR958783
  7. [7] I.M. Gelfand: Some problems in the theory of quasi-linear equations. Uspekhi Mat. Nauk, (N.S.), 14 (86), 1959, 87-158 (in russian); Amer. Math. Soc. Transl, (Ser. 2), 29, 1963, 289-292. MR110868
  8. [8] F. Mignot, J.P. Puel: Sur une classe de problèmes non linéaires avec nonlinéarité positive, croissante, convexe. Comm. PDE, 5 (8), 1980, 791-836. Zbl0456.35034MR583604
  9. [9] F. Mignot, J.P. Puel: Solution singulière radiale de -∆u = λeu. C. R. Acad. Sci. Paris, 307, série I, 1988, 379-382. Zbl0683.35032MR965802
  10. [10] D.H. Sattinger: Monotone methods in nonlinear elliptic and parabolic boundary value problems. Indiana Univ. Math. J., 21 1972, 979-1000. Zbl0223.35038MR299921
  11. [11] J.C. Saut, B. Scheurer: Sur l'unicité du problème de cauchy et le prolongement unique pour des équations elliptiques à coefficients non localement bornés. J. Diff. Eq., 43 1982, 28-43. Zbl0431.35017MR645635
  12. [12] G. Stampacchia: Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus. Ann. Inst. Fourier, 15 1965, 189-258. Zbl0151.15401MR192177

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.