Optimal control of an ill-posed elliptic semilinear equation with an exponential non linearity
E. Casas; O. Kavian; J.-P. Puel
ESAIM: Control, Optimisation and Calculus of Variations (1998)
- Volume: 3, page 361-380
- ISSN: 1292-8119
Access Full Article
topHow to cite
topCasas, E., Kavian, O., and Puel, J.-P.. "Optimal control of an ill-posed elliptic semilinear equation with an exponential non linearity." ESAIM: Control, Optimisation and Calculus of Variations 3 (1998): 361-380. <http://eudml.org/doc/90530>.
@article{Casas1998,
author = {Casas, E., Kavian, O., Puel, J.-P.},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {elliptic equation; exponential nonlinearity; existence of solutions; optimal control; necessary optimality conditions},
language = {eng},
pages = {361-380},
publisher = {EDP Sciences},
title = {Optimal control of an ill-posed elliptic semilinear equation with an exponential non linearity},
url = {http://eudml.org/doc/90530},
volume = {3},
year = {1998},
}
TY - JOUR
AU - Casas, E.
AU - Kavian, O.
AU - Puel, J.-P.
TI - Optimal control of an ill-posed elliptic semilinear equation with an exponential non linearity
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 1998
PB - EDP Sciences
VL - 3
SP - 361
EP - 380
LA - eng
KW - elliptic equation; exponential nonlinearity; existence of solutions; optimal control; necessary optimality conditions
UR - http://eudml.org/doc/90530
ER -
References
top- [1] H. Amann: On the number of solutions of nonlinear equations in ordered Banach spaces. J. Func. Anal., 11 1972, 346-384. Zbl0244.47046MR358470
- [2] L. Boccardo, F. Murat: Almost everywhere convergence of the gradients of solutions to elliptic and parabolie equationsNonlinear Anal., Theory, Methods, Appl., 19 1992, 581-597. Zbl0783.35020MR1183665
- [3] S. Chandrasekhar: An introduction to the study of stellar structures. Dover Publishing Inc., 1985. Zbl0079.23901MR92663
- [4] M.G. Grandall, P.H. Rabinowitz: Some continuation and variational methods for positive solutions of nonlinear elliptic eigenvalue problems. Arch. Rational Mech. Anal., 58 1975, 207-218. Zbl0309.35057MR382848
- [5] D.A. Franck-Kamenetskii: Diffusion and heat transfer in chemical kinetics. Second edition, Plenum Press, 1969.
- [6] Th. Gallouët, F. Mignot, J.P. Puel: Quelques résultats sur le problème -∆u = λeu. C. R. Acad. Sci. Paris, 307, série I, 1988, 289-292. Zbl0697.35048MR958783
- [7] I.M. Gelfand: Some problems in the theory of quasi-linear equations. Uspekhi Mat. Nauk, (N.S.), 14 (86), 1959, 87-158 (in russian); Amer. Math. Soc. Transl, (Ser. 2), 29, 1963, 289-292. MR110868
- [8] F. Mignot, J.P. Puel: Sur une classe de problèmes non linéaires avec nonlinéarité positive, croissante, convexe. Comm. PDE, 5 (8), 1980, 791-836. Zbl0456.35034MR583604
- [9] F. Mignot, J.P. Puel: Solution singulière radiale de -∆u = λeu. C. R. Acad. Sci. Paris, 307, série I, 1988, 379-382. Zbl0683.35032MR965802
- [10] D.H. Sattinger: Monotone methods in nonlinear elliptic and parabolic boundary value problems. Indiana Univ. Math. J., 21 1972, 979-1000. Zbl0223.35038MR299921
- [11] J.C. Saut, B. Scheurer: Sur l'unicité du problème de cauchy et le prolongement unique pour des équations elliptiques à coefficients non localement bornés. J. Diff. Eq., 43 1982, 28-43. Zbl0431.35017MR645635
- [12] G. Stampacchia: Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus. Ann. Inst. Fourier, 15 1965, 189-258. Zbl0151.15401MR192177
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.