# On the existence of nonsmooth control-Lyapunov functions in the sense of generalized gradients

ESAIM: Control, Optimisation and Calculus of Variations (2001)

- Volume: 6, page 593-611
- ISSN: 1292-8119

## Access Full Article

top## Abstract

top## How to cite

topRifford, Ludovic. "On the existence of nonsmooth control-Lyapunov functions in the sense of generalized gradients." ESAIM: Control, Optimisation and Calculus of Variations 6 (2001): 593-611. <http://eudml.org/doc/90610>.

@article{Rifford2001,

abstract = {Let $\dot\{x\}=f(x,u)$ be a general control system; the existence of a smooth control-Lyapunov function does not imply the existence of a continuous stabilizing feedback. However, we show that it allows us to design a stabilizing feedback in the Krasovskii (or Filippov) sense. Moreover, we recall a definition of a control-Lyapunov function in the case of a nonsmooth function; it is based on Clarke’s generalized gradient. Finally, with an inedite proof we prove that the existence of this type of control-Lyapunov function is equivalent to the existence of a classical control-Lyapunov function. This property leads to a generalization of a result on the systems with integrator.},

author = {Rifford, Ludovic},

journal = {ESAIM: Control, Optimisation and Calculus of Variations},

keywords = {asymptotic stabilizability; converse Lyapunov theorem; nonsmooth analysis; differential inclusion; Filippov and krasovskii solutions; feedback; Filippov and Krasovskij solutions; epigraph; viability property; control-Lyapunov function},

language = {eng},

pages = {593-611},

publisher = {EDP-Sciences},

title = {On the existence of nonsmooth control-Lyapunov functions in the sense of generalized gradients},

url = {http://eudml.org/doc/90610},

volume = {6},

year = {2001},

}

TY - JOUR

AU - Rifford, Ludovic

TI - On the existence of nonsmooth control-Lyapunov functions in the sense of generalized gradients

JO - ESAIM: Control, Optimisation and Calculus of Variations

PY - 2001

PB - EDP-Sciences

VL - 6

SP - 593

EP - 611

AB - Let $\dot{x}=f(x,u)$ be a general control system; the existence of a smooth control-Lyapunov function does not imply the existence of a continuous stabilizing feedback. However, we show that it allows us to design a stabilizing feedback in the Krasovskii (or Filippov) sense. Moreover, we recall a definition of a control-Lyapunov function in the case of a nonsmooth function; it is based on Clarke’s generalized gradient. Finally, with an inedite proof we prove that the existence of this type of control-Lyapunov function is equivalent to the existence of a classical control-Lyapunov function. This property leads to a generalization of a result on the systems with integrator.

LA - eng

KW - asymptotic stabilizability; converse Lyapunov theorem; nonsmooth analysis; differential inclusion; Filippov and krasovskii solutions; feedback; Filippov and Krasovskij solutions; epigraph; viability property; control-Lyapunov function

UR - http://eudml.org/doc/90610

ER -

## References

top- [1] Z. Artstein, Stabilization with relaxed controls. Nonlinear Anal. 7 (1983) 1163-1173. Zbl0525.93053MR721403
- [2] J.-P. Aubin, Viability theory. Birkhäuser Boston Inc., Boston, MA (1991). Zbl0755.93003MR1134779
- [3] J.P. Aubin and A. Cellina, Differential Inclusions. Springer-Verlag (1984). Zbl0538.34007MR755330
- [4] J.P. Aubin and H. Frankowska, Set-valued analysis. Birkhäuser (1990). Zbl0713.49021MR1048347
- [5] C.I. Byrnes and A. Isidori, New results and examples in nonlinear feedback stabilization. Systems Control Lett. 12 (1989) 437-442. Zbl0684.93059MR1005310
- [6] F.H. Clarke, Yu.S. Ledyaev, L. Rifford and R.J. Stern, Feedback stabilization and Lyapunov functions. SIAM J. Control Optim. 39 (2000) 25-48. Zbl0961.93047MR1780907
- [7] F.H. Clarke, Optimization and Nonsmooth Analysis. Wiley-Interscience, New York (1983). Republished as Classics Appl. Math. 5 (1990). Zbl0696.49002MR1058436
- [8] F.H. Clarke, Yu.S. Ledyaev and R.J. Stern, Asymptotic stability and smooth Lyapunov functions. J. Differential Equations 149 (1998) 69-114. Zbl0907.34013MR1643670
- [9] F.H. Clarke, Yu.S. Ledyaev, R.J. Stern and P.R. Wolenski, Nonsmooth Analysis and Control Theory. Springer-Verlag, New York, Grad. Texts in Math. 178 (1998). Zbl1047.49500MR1488695
- [10] J.-M. Coron, On the stabilization of some nonlinear control systems: Results, tools, and applications, in Nonlinear analysis, differential equations and control (Montreal, QC, 1998). Kluwer Acad. Publ., Dordrecht (1999) 307-367. Zbl0984.93067MR1695009
- [11] J.-M. Coron, Some open problems in control theory, in Differential geometry and control (Boulder, CO, 1997). Providence, RI, Amer. Math. Soc. (1999) 149-162. Zbl0945.93006MR1654580
- [12] J.-M. Coron and L. Rosier, A relation between continuous time-varying and discontinuous feedback stabilization. J. Math. Systems Estim. Control 4 (1994) 67-84. Zbl0925.93827MR1298548
- [13] K. Deimling, Multivalued Differential Equations. de Gruyter, Berlin (1992). Zbl0760.34002MR1189795
- [14] A.F. Filippov, Differential Equations with Discontinuous Righthand Sides. Kluwer Academic Publishers (1988). Zbl0664.34001MR1028776
- [15] R. Freeman and P.V. Kokotovic, Robust Nonlinear Control Design. State-Space and Lyapunov Techniques. Birkhäuser (1996). Zbl0857.93001MR1396307
- [16] R.A. Freeman and P.V. Kokotovic, Backstepping design with nonsmooth nonlinearities, in Proc. of the IFAC Nonlinear Control Systems design symposium. Tahoe City, California (1995).
- [17] O. Hájek, Discontinuous differential equations. I, II. J. Differential Equations 32 (1979) 149-170, 171-185. Zbl0365.34017MR534546
- [18] J.-B. Hiriart–Urruty and C. Imbert, Les fonctions d’appui de la jacobienne généralisée de Clarke et de son enveloppe plénière. C. R. Acad. Sci. Paris Sér. I Math. 326 (1998) 1275-1278. Zbl0940.49017
- [19] N.N. Krasovskiĭ, Stability of motion. Applications of Lyapunov’s second method to differential systems and equations with delay. Stanford University Press, Stanford, California (1963). Translated by J.L. Brenner. Zbl0109.06001
- [20] J. Kurzweil, On the inversion of Lyapunov’s second theorem on stability of motion. Amer. Math. Soc. Transl. Ser. 2 24 (1956) 19-77. Zbl0127.30703
- [21] Yu.S. Ledyaev and E.D. Sontag, A Lyapunov characterization of robust stabilization. Nonlinear Anal. 37 (1999) 813-840. Zbl0947.34054MR1695080
- [22] Y. Lin, E.D. Sontag and Y. Wang, A smooth converse Lyapunov theorem for robust stability. SIAM J. Control Optim. 34 (1996) 124-160. Zbl0856.93070MR1372908
- [23] J.L. Massera, Contributions to stability theory. Ann. of Math. (2) 64 (1956) 182-206. Zbl0070.31003MR79179
- [24] E. Michael, Continuous selections. I. Ann. of Math. (2) 63 (1956) 361-382. Zbl0071.15902MR77107
- [25] L. Praly and A.R. Teel, On assigning the derivative of a disturbance attenuation clf, in Proc. of the 37th IEEE conference on decision and control. Tampa, Florida (1998). Zbl0965.93048
- [26] L. Rifford, Existence of Lipschitz and semiconcave control-Lyapunov functions. SIAM J. Control Optim. 39 (2000) 1043-1064. Zbl0982.93068MR1814266
- [27] L. Rosier, Étude de quelques problèmes de stabilisation, Ph.D. Thesis. ENS de Cachan (1993).
- [28] E.D. Sontag, A “universal” construction of Artstein’s theorem on nonlinear stabilization. Systems Control Lett. 13 (1989) 117-123. Zbl0684.93063
- [29] E.D. Sontag, Mathematical Control Theory. Springer-Verlag, New York, Texts Appl. Math. 6 (1990) (Second Edition, 1998). Zbl0703.93001MR1070569
- [30] E.D. Sontag, Stability and stabilization: Discontinuities and the effect of disturbances, in Nonlinear analysis, differential equations and control (Montreal, QC, 1998). Kluwer Acad. Publ., Dordrecht (1999) 551-598. Zbl0937.93034MR1695014
- [31] A.R. Teel and L. Praly, A smooth Lyapunov function from a class-$\mathcal{K}\mathcal{L}$ estimate involving two positive semidefinite functions. ESAIM: COCV 5 (2000) 313-367. Zbl0953.34042MR1765429
- [32] J. Tsinias, A Lyapunov description of stability in control systems. Nonlinear Anal. 13 (1989) 3-74. Zbl0695.93083MR973369
- [33] J. Tsinias, Sufficient Lyapunov-like conditions for stabilization. Math. Control Signals Systems 2 (1989) 343-357. Zbl0688.93048MR1015672
- [34] J. Tsinias, A local stabilization theorem for interconnected systems. Systems Control Lett. 18 (1992) 429-434. Zbl0763.93076MR1169288
- [35] J. Tsinias, An extension of Artstein’s theorem on stabilization by using ordinary feedback integrators. Systems Control Lett. 20 (1993) 141-148. Zbl0782.93080

## Citations in EuDML Documents

top## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.