On the existence of nonsmooth control-Lyapunov functions in the sense of generalized gradients

Ludovic Rifford

ESAIM: Control, Optimisation and Calculus of Variations (2001)

  • Volume: 6, page 593-611
  • ISSN: 1292-8119

Abstract

top
Let x ˙ = f ( x , u ) be a general control system; the existence of a smooth control-Lyapunov function does not imply the existence of a continuous stabilizing feedback. However, we show that it allows us to design a stabilizing feedback in the Krasovskii (or Filippov) sense. Moreover, we recall a definition of a control-Lyapunov function in the case of a nonsmooth function; it is based on Clarke’s generalized gradient. Finally, with an inedite proof we prove that the existence of this type of control-Lyapunov function is equivalent to the existence of a classical control-Lyapunov function. This property leads to a generalization of a result on the systems with integrator.

How to cite

top

Rifford, Ludovic. "On the existence of nonsmooth control-Lyapunov functions in the sense of generalized gradients." ESAIM: Control, Optimisation and Calculus of Variations 6 (2001): 593-611. <http://eudml.org/doc/90610>.

@article{Rifford2001,
abstract = {Let $\dot\{x\}=f(x,u)$ be a general control system; the existence of a smooth control-Lyapunov function does not imply the existence of a continuous stabilizing feedback. However, we show that it allows us to design a stabilizing feedback in the Krasovskii (or Filippov) sense. Moreover, we recall a definition of a control-Lyapunov function in the case of a nonsmooth function; it is based on Clarke’s generalized gradient. Finally, with an inedite proof we prove that the existence of this type of control-Lyapunov function is equivalent to the existence of a classical control-Lyapunov function. This property leads to a generalization of a result on the systems with integrator.},
author = {Rifford, Ludovic},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {asymptotic stabilizability; converse Lyapunov theorem; nonsmooth analysis; differential inclusion; Filippov and krasovskii solutions; feedback; Filippov and Krasovskij solutions; epigraph; viability property; control-Lyapunov function},
language = {eng},
pages = {593-611},
publisher = {EDP-Sciences},
title = {On the existence of nonsmooth control-Lyapunov functions in the sense of generalized gradients},
url = {http://eudml.org/doc/90610},
volume = {6},
year = {2001},
}

TY - JOUR
AU - Rifford, Ludovic
TI - On the existence of nonsmooth control-Lyapunov functions in the sense of generalized gradients
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 2001
PB - EDP-Sciences
VL - 6
SP - 593
EP - 611
AB - Let $\dot{x}=f(x,u)$ be a general control system; the existence of a smooth control-Lyapunov function does not imply the existence of a continuous stabilizing feedback. However, we show that it allows us to design a stabilizing feedback in the Krasovskii (or Filippov) sense. Moreover, we recall a definition of a control-Lyapunov function in the case of a nonsmooth function; it is based on Clarke’s generalized gradient. Finally, with an inedite proof we prove that the existence of this type of control-Lyapunov function is equivalent to the existence of a classical control-Lyapunov function. This property leads to a generalization of a result on the systems with integrator.
LA - eng
KW - asymptotic stabilizability; converse Lyapunov theorem; nonsmooth analysis; differential inclusion; Filippov and krasovskii solutions; feedback; Filippov and Krasovskij solutions; epigraph; viability property; control-Lyapunov function
UR - http://eudml.org/doc/90610
ER -

References

top
  1. [1] Z. Artstein, Stabilization with relaxed controls. Nonlinear Anal. 7 (1983) 1163-1173. Zbl0525.93053MR721403
  2. [2] J.-P. Aubin, Viability theory. Birkhäuser Boston Inc., Boston, MA (1991). Zbl0755.93003MR1134779
  3. [3] J.P. Aubin and A. Cellina, Differential Inclusions. Springer-Verlag (1984). Zbl0538.34007MR755330
  4. [4] J.P. Aubin and H. Frankowska, Set-valued analysis. Birkhäuser (1990). Zbl0713.49021MR1048347
  5. [5] C.I. Byrnes and A. Isidori, New results and examples in nonlinear feedback stabilization. Systems Control Lett. 12 (1989) 437-442. Zbl0684.93059MR1005310
  6. [6] F.H. Clarke, Yu.S. Ledyaev, L. Rifford and R.J. Stern, Feedback stabilization and Lyapunov functions. SIAM J. Control Optim. 39 (2000) 25-48. Zbl0961.93047MR1780907
  7. [7] F.H. Clarke, Optimization and Nonsmooth Analysis. Wiley-Interscience, New York (1983). Republished as Classics Appl. Math. 5 (1990). Zbl0696.49002MR1058436
  8. [8] F.H. Clarke, Yu.S. Ledyaev and R.J. Stern, Asymptotic stability and smooth Lyapunov functions. J. Differential Equations 149 (1998) 69-114. Zbl0907.34013MR1643670
  9. [9] F.H. Clarke, Yu.S. Ledyaev, R.J. Stern and P.R. Wolenski, Nonsmooth Analysis and Control Theory. Springer-Verlag, New York, Grad. Texts in Math. 178 (1998). Zbl1047.49500MR1488695
  10. [10] J.-M. Coron, On the stabilization of some nonlinear control systems: Results, tools, and applications, in Nonlinear analysis, differential equations and control (Montreal, QC, 1998). Kluwer Acad. Publ., Dordrecht (1999) 307-367. Zbl0984.93067MR1695009
  11. [11] J.-M. Coron, Some open problems in control theory, in Differential geometry and control (Boulder, CO, 1997). Providence, RI, Amer. Math. Soc. (1999) 149-162. Zbl0945.93006MR1654580
  12. [12] J.-M. Coron and L. Rosier, A relation between continuous time-varying and discontinuous feedback stabilization. J. Math. Systems Estim. Control 4 (1994) 67-84. Zbl0925.93827MR1298548
  13. [13] K. Deimling, Multivalued Differential Equations. de Gruyter, Berlin (1992). Zbl0760.34002MR1189795
  14. [14] A.F. Filippov, Differential Equations with Discontinuous Righthand Sides. Kluwer Academic Publishers (1988). Zbl0664.34001MR1028776
  15. [15] R. Freeman and P.V. Kokotovic, Robust Nonlinear Control Design. State-Space and Lyapunov Techniques. Birkhäuser (1996). Zbl0857.93001MR1396307
  16. [16] R.A. Freeman and P.V. Kokotovic, Backstepping design with nonsmooth nonlinearities, in Proc. of the IFAC Nonlinear Control Systems design symposium. Tahoe City, California (1995). 
  17. [17] O. Hájek, Discontinuous differential equations. I, II. J. Differential Equations 32 (1979) 149-170, 171-185. Zbl0365.34017MR534546
  18. [18] J.-B. Hiriart–Urruty and C. Imbert, Les fonctions d’appui de la jacobienne généralisée de Clarke et de son enveloppe plénière. C. R. Acad. Sci. Paris Sér. I Math. 326 (1998) 1275-1278. Zbl0940.49017
  19. [19] N.N. Krasovskiĭ, Stability of motion. Applications of Lyapunov’s second method to differential systems and equations with delay. Stanford University Press, Stanford, California (1963). Translated by J.L. Brenner. Zbl0109.06001
  20. [20] J. Kurzweil, On the inversion of Lyapunov’s second theorem on stability of motion. Amer. Math. Soc. Transl. Ser. 2 24 (1956) 19-77. Zbl0127.30703
  21. [21] Yu.S. Ledyaev and E.D. Sontag, A Lyapunov characterization of robust stabilization. Nonlinear Anal. 37 (1999) 813-840. Zbl0947.34054MR1695080
  22. [22] Y. Lin, E.D. Sontag and Y. Wang, A smooth converse Lyapunov theorem for robust stability. SIAM J. Control Optim. 34 (1996) 124-160. Zbl0856.93070MR1372908
  23. [23] J.L. Massera, Contributions to stability theory. Ann. of Math. (2) 64 (1956) 182-206. Zbl0070.31003MR79179
  24. [24] E. Michael, Continuous selections. I. Ann. of Math. (2) 63 (1956) 361-382. Zbl0071.15902MR77107
  25. [25] L. Praly and A.R. Teel, On assigning the derivative of a disturbance attenuation clf, in Proc. of the 37th IEEE conference on decision and control. Tampa, Florida (1998). Zbl0965.93048
  26. [26] L. Rifford, Existence of Lipschitz and semiconcave control-Lyapunov functions. SIAM J. Control Optim. 39 (2000) 1043-1064. Zbl0982.93068MR1814266
  27. [27] L. Rosier, Étude de quelques problèmes de stabilisation, Ph.D. Thesis. ENS de Cachan (1993). 
  28. [28] E.D. Sontag, A “universal” construction of Artstein’s theorem on nonlinear stabilization. Systems Control Lett. 13 (1989) 117-123. Zbl0684.93063
  29. [29] E.D. Sontag, Mathematical Control Theory. Springer-Verlag, New York, Texts Appl. Math. 6 (1990) (Second Edition, 1998). Zbl0703.93001MR1070569
  30. [30] E.D. Sontag, Stability and stabilization: Discontinuities and the effect of disturbances, in Nonlinear analysis, differential equations and control (Montreal, QC, 1998). Kluwer Acad. Publ., Dordrecht (1999) 551-598. Zbl0937.93034MR1695014
  31. [31] A.R. Teel and L. Praly, A smooth Lyapunov function from a class- 𝒦 estimate involving two positive semidefinite functions. ESAIM: COCV 5 (2000) 313-367. Zbl0953.34042MR1765429
  32. [32] J. Tsinias, A Lyapunov description of stability in control systems. Nonlinear Anal. 13 (1989) 3-74. Zbl0695.93083MR973369
  33. [33] J. Tsinias, Sufficient Lyapunov-like conditions for stabilization. Math. Control Signals Systems 2 (1989) 343-357. Zbl0688.93048MR1015672
  34. [34] J. Tsinias, A local stabilization theorem for interconnected systems. Systems Control Lett. 18 (1992) 429-434. Zbl0763.93076MR1169288
  35. [35] J. Tsinias, An extension of Artstein’s theorem on stabilization by using ordinary feedback integrators. Systems Control Lett. 20 (1993) 141-148. Zbl0782.93080

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.