Value functions for Bolza problems with discontinuous lagrangians and Hamilton-Jacobi inequalities

Gianni Dal Maso; Hélène Frankowska

ESAIM: Control, Optimisation and Calculus of Variations (2000)

  • Volume: 5, page 369-393
  • ISSN: 1292-8119

How to cite

top

Dal Maso, Gianni, and Frankowska, Hélène. "Value functions for Bolza problems with discontinuous lagrangians and Hamilton-Jacobi inequalities." ESAIM: Control, Optimisation and Calculus of Variations 5 (2000): 369-393. <http://eudml.org/doc/90574>.

@article{DalMaso2000,
author = {Dal Maso, Gianni, Frankowska, Hélène},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {discontinuous Lagrangians; Hamilton-Jacobi equations; viability theory; viscosity solutions; Bolza problem},
language = {eng},
pages = {369-393},
publisher = {EDP Sciences},
title = {Value functions for Bolza problems with discontinuous lagrangians and Hamilton-Jacobi inequalities},
url = {http://eudml.org/doc/90574},
volume = {5},
year = {2000},
}

TY - JOUR
AU - Dal Maso, Gianni
AU - Frankowska, Hélène
TI - Value functions for Bolza problems with discontinuous lagrangians and Hamilton-Jacobi inequalities
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 2000
PB - EDP Sciences
VL - 5
SP - 369
EP - 393
LA - eng
KW - discontinuous Lagrangians; Hamilton-Jacobi equations; viability theory; viscosity solutions; Bolza problem
UR - http://eudml.org/doc/90574
ER -

References

top
  1. [1] M. Amar, G. Bellettini and S. Venturini, Integral representation of functionals defined on curves of W1, p. Proc. Roy. Soc. Edinburgh Sect. A 128 ( 1998) 193-217. Zbl0917.46025MR1621319
  2. [2] L. Ambrosio, O. Ascenzi and G. Buttazzo, Lipschitz regularity for minimizers of integral functionals with highly discontinuons integrands. J. Math. Anal. Appl. 142 ( 1989) 301-316. Zbl0689.49025MR1014576
  3. [3] J.-P. Aubin, Contingent derivatives of set-valued maps and existence of solutions to nonlinear inclusions and differential inclusions. Advances in Mathematics, Supplementary Studies, edited by L. Nachbin ( 1981) 160-232. Zbl0484.47034MR634239
  4. [4] J.-P. Aubin, A survey of viability theory. SIAM J. Control Optim. 28 ( 1990) 749-788. Zbl0714.49021MR1051623
  5. [5] J.-P. Aubin, Viability Theory. Birkhäuser, Boston ( 1991). Zbl0755.93003MR1134779
  6. [6] J.-P. Aubin, Optima and Equilibria. Springer-Verlag, Berlin, Grad. Texts in Math. 140 ( 1993). Zbl0781.90012MR1217485
  7. [7] J.-P. Aubin and A. Cellina, Differential Inclusions. Springer-Verlag, Berlin, Grundlehren Math. Wiss. 264 ( 1984). Zbl0538.34007MR755330
  8. [8] J.-P. Aubin and I. Ekeland, Applied Nonlinear Analysis. Wiley & Sons, New York ( 1984). Zbl0641.47066MR749753
  9. [9] J.-P. Aubin and H. Frankowska, Set-Valued Analysis. Birkhäuser, Boston ( 1990). Zbl0713.49021MR1048347
  10. [10] E.N. Barron and R. Jensen, Semicontinuous viscosity solutions for Hamilton-Jacobi equations with convex Hamiltonian. Comm. Partial Differential Equations 15 ( 1990) 1713-1742. Zbl0732.35014MR1080619
  11. [11] J.W. Bebernes and J.D. Schuur, The Wazewski topological method for contingent equations. Ann. Mat. Pura Appl. 87 ( 1970) 271-280. Zbl0251.34029MR299906
  12. [12] G. Buttazzo, Semicontinuity, Relaxation and Integral Representation Problems in the Calculus of Variations. Longman, Harlow, Pitman Res. Notes Math. Ser. ( 1989). Zbl0669.49005
  13. [13] L. Cesari, Optimization Theory and Applications. Problems with Ordinary Differential Equations. Springer-Verlag, Berlin, Appl. Math. 17 ( 1983). Zbl0506.49001MR688142
  14. [14] B. Cornet, Regular properties of tangent and normal cones. Cahiers de Maths, de la Décision No. 8130 ( 1981). 
  15. [15] M.G. Crandall, P.-L. Lions, Viscosity solutions of Hamilton-Jacobi equations. Trans. Amer. Math. Soc. 277 ( 1983) 1-42. Zbl0599.35024MR690039
  16. [16] G. Dal Maso and L. Modica, Integral functionals determined by their minima. Rend. Sem. Mat. Univ. Padova 76 ( 1986) 255-267. Zbl0613.49028MR881574
  17. [17] C. Dellacherie, P.-A. Meyer, Probabilités et potentiel. Hermann, Paris ( 1975). Zbl0323.60039MR488194
  18. [18] H. Frankowska, L'équation d'Hamilton-Jacobi contingente. C. R. Acad. Sci. Paris Sér. I Math. 304 ( 1987) 295-298. Zbl0612.49023MR886727
  19. [19] H. Frankowska, Optimal trajectories associated to a solution of contingent Hamilton-Jacobi equations. Appl. Math. Optim. 19 ( 1989) 291-311. Zbl0672.49023MR974188
  20. [20] H. Frankowska, Lower semicontinuous solutions of Hamilton-Jacobi-Bellman equations, in Proc. of IEEE CDC Conference. Brighton, England ( 1991). Zbl0796.49024
  21. [21] H. Frankowska, Lower semicontinuous solutions of Hamilton-Jacobi-Bellman equations. SIAM J. Control Optim. 31 ( 1993) 257-272. Zbl0796.49024MR1200233
  22. [22] H. Frankowska, S. Plaskacz and T. Rzeżuchowski, Measurable viability theorems and Hamilton-Jacobi-Bellman equation. J. Differential Equations 116 ( 1995) 265-305. Zbl0836.34016MR1318576
  23. [23] G.N. Galbraith, Extended Hamilton-Jacobi characterization of value functions in optimal control. Preprint Washington University, Seattle ( 1998). Zbl0971.49017MR1780920
  24. [24] H.G. Guseinov, A.I. Subbotin and V.N. Ushakov, Derivatives for multivalued mappings with application to game-theoretical problems of control. Problems Control Inform. 14 ( 1985155-168. Zbl0593.90095MR806060
  25. [25] A.D. Ioffe, On lower semicontinuity of integral functionals. SIAM J. Control Optim. 15 ( 1977) 521-521 and 991-1000. Zbl0379.46022MR637235
  26. [26] C. Olech, Weak lower semicontinuity of integral functionals. J. Optim. Theory Appl. 19 ( 1976) 3-16. Zbl0305.49019MR428161
  27. [27] T. Rockafellar, Proximal subgradients, marginal values and augmented Lagrangians in nonconvex optimization. Math. Oper. Res. 6 ( 1981) 424-436. Zbl0492.90073MR629642
  28. [28] T. Rockafellar and R. Wets, Variational Analysis. Springer-Verlag, Berlin, Grundlehren Math. Wiss. 317 ( 1998). Zbl0888.49001MR1491362
  29. [29] A.I. Subbotin, A generalization of the basic equation of the theory of the differential games. Soviet. Math. Dokl. 22 ( 1980) 358-362. Zbl0467.90095

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.