On some optimal control problems for the heat radiative transfer equation

Sandro Manservisi; Knut Heusermann

ESAIM: Control, Optimisation and Calculus of Variations (2000)

  • Volume: 5, page 425-444
  • ISSN: 1292-8119

How to cite

top

Manservisi, Sandro, and Heusermann, Knut. "On some optimal control problems for the heat radiative transfer equation." ESAIM: Control, Optimisation and Calculus of Variations 5 (2000): 425-444. <http://eudml.org/doc/90576>.

@article{Manservisi2000,
author = {Manservisi, Sandro, Heusermann, Knut},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {heat radiative transfer; optimal shape design; optimal control},
language = {eng},
pages = {425-444},
publisher = {EDP Sciences},
title = {On some optimal control problems for the heat radiative transfer equation},
url = {http://eudml.org/doc/90576},
volume = {5},
year = {2000},
}

TY - JOUR
AU - Manservisi, Sandro
AU - Heusermann, Knut
TI - On some optimal control problems for the heat radiative transfer equation
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 2000
PB - EDP Sciences
VL - 5
SP - 425
EP - 444
LA - eng
KW - heat radiative transfer; optimal shape design; optimal control
UR - http://eudml.org/doc/90576
ER -

References

top
  1. [1] F. Abergel and R. Temam, On some control problems in fluid mechanics. Theoret. Computational Fluid Dynamics 1 ( 1990) 303-326. Zbl0708.76106
  2. [2] R. Adams, Sobolev Spaces. Academic Press, New York ( 1975). Zbl0314.46030MR450957
  3. [3] V. Alekseev, V. Tikhomirov and S. Fomin, Optimal Control. Consultants Bureau, New York ( 1987). Zbl0689.49001MR924574
  4. [4] I. Babuska, The finite element method with Lagrangian multipliers. Numer. Math. 16 ( 1973) 179-192. Zbl0258.65108MR359352
  5. [5] D.M. Bedivan and G.J. Fix, An extension theorem for the space Hdiv. Appl. Math. Lett. (to appear). Zbl0915.46024
  6. [6] N. Di Cesare, O. Pironneau and E. Polak, Consistent approximations for an optimal design problem. Report 98005 Labotatoire d'analyse numérique, Paris, France ( 1998). 
  7. [7] P. Ciarlet, Introduction to Numerical Linear Algebra and Optimization. Cambridge University, Cambridge ( 1989). Zbl0672.65001MR1015713
  8. [8] P. Ciarlet, The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam ( 1978). Zbl0383.65058MR520174
  9. [9] J.E. Dennis and R.B. Schnabel, Numerical methods for unconstrained optimisation and non-linear equations. Prentice-Hall Inc., New Jersey ( 1983). Zbl0579.65058
  10. [10] V. Girault and P. Raviart, The Finite Element Method for Navier-Stokes Equations: Theory and Algorithms. Springer-Verlag, New York ( 1986). Zbl0585.65077MR851383
  11. [11] M. Gunzburger and S. Manservisi, Analysis and approximation of the velocity tracking problem for Navier-Stokes flows with distributed control. SIAM J. Numer. Anal. (to appear). Zbl0963.35150MR1759904
  12. [12] M. Gunzburger and S. Manservisi, The velocity tracking problem for for Navier-Stokes flows with bounded distributed control. SIAM J. Control Optim. (to appear). Zbl0938.35118MR1720145
  13. [13] J. Haslinger and P. Neittaanmäki, Finite Element Approximation for Optimal Shape Design. Wiley, Chichester ( 1988). Zbl0713.73062MR982710
  14. [14] K. Heusermann and S. Manservisi, Optimal design for heat radiative transfer systems. Comput. Methods Appl. Mech. Engrg. (to appear). Zbl0952.49035
  15. [15] F.P. Incropera and D.P. DeWitt, Fundamentals of Heat and Mass Transfer. Wiley, New York ( 1990). 
  16. [16] M. Modest, Radiative heat transfer. McGraw-Hill, New York ( 1993). 
  17. [17] O. Pironneau, Optimal shape design in fluid mechanics. Thesis, University of Paris ( 1976). 
  18. [18] O. Pironneau, On optimal design in fluid mechanics. J. Fluid. Mech. 64 ( 1974) 97-110. Zbl0281.76020MR347229
  19. [19] O. Pironneau, Optimal shape design for elliptic systems. Springer, Berlin ( 1984). Zbl0534.49001MR725856
  20. [20] R.E. Showalter, Hilbert Space Methods for Partial Differential Equations. Electron. J. Differential Equations ( 1994) http://ejde.math.swt.edu/mono-toc.html Zbl0991.35001MR1302484
  21. [21] J. Sokolowski and J. Zolesio, Introduction to shape optimisation: Shape sensitivity analysis. Springer, Berlin ( 1992). Zbl0761.73003
  22. [22] T. Tiihonen, Stefan-Boltzmann radiation on Non-convex Surfaces. Math. Methods Appl. Sci. 20 ( 1997) 47-57. Zbl0872.35044MR1429330
  23. [23] T. Tiihonen, Finite Element Approximations for a Beat Radiation Problem. Report 7/ 1995, Dept. of Mathematics, University of Jyväskylä ( 1995). 
  24. [24] V. Tikhomirov, Fundamental Principles of the Theory of Extremal Problems. Wiley, Chichester ( 1986). Zbl0595.49001MR866483

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.