On some optimal control problems for the heat radiative transfer equation
Sandro Manservisi; Knut Heusermann
ESAIM: Control, Optimisation and Calculus of Variations (2000)
- Volume: 5, page 425-444
- ISSN: 1292-8119
Access Full Article
topHow to cite
topManservisi, Sandro, and Heusermann, Knut. "On some optimal control problems for the heat radiative transfer equation." ESAIM: Control, Optimisation and Calculus of Variations 5 (2000): 425-444. <http://eudml.org/doc/90576>.
@article{Manservisi2000,
author = {Manservisi, Sandro, Heusermann, Knut},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {heat radiative transfer; optimal shape design; optimal control},
language = {eng},
pages = {425-444},
publisher = {EDP Sciences},
title = {On some optimal control problems for the heat radiative transfer equation},
url = {http://eudml.org/doc/90576},
volume = {5},
year = {2000},
}
TY - JOUR
AU - Manservisi, Sandro
AU - Heusermann, Knut
TI - On some optimal control problems for the heat radiative transfer equation
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 2000
PB - EDP Sciences
VL - 5
SP - 425
EP - 444
LA - eng
KW - heat radiative transfer; optimal shape design; optimal control
UR - http://eudml.org/doc/90576
ER -
References
top- [1] F. Abergel and R. Temam, On some control problems in fluid mechanics. Theoret. Computational Fluid Dynamics 1 ( 1990) 303-326. Zbl0708.76106
- [2] R. Adams, Sobolev Spaces. Academic Press, New York ( 1975). Zbl0314.46030MR450957
- [3] V. Alekseev, V. Tikhomirov and S. Fomin, Optimal Control. Consultants Bureau, New York ( 1987). Zbl0689.49001MR924574
- [4] I. Babuska, The finite element method with Lagrangian multipliers. Numer. Math. 16 ( 1973) 179-192. Zbl0258.65108MR359352
- [5] D.M. Bedivan and G.J. Fix, An extension theorem for the space Hdiv. Appl. Math. Lett. (to appear). Zbl0915.46024
- [6] N. Di Cesare, O. Pironneau and E. Polak, Consistent approximations for an optimal design problem. Report 98005 Labotatoire d'analyse numérique, Paris, France ( 1998).
- [7] P. Ciarlet, Introduction to Numerical Linear Algebra and Optimization. Cambridge University, Cambridge ( 1989). Zbl0672.65001MR1015713
- [8] P. Ciarlet, The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam ( 1978). Zbl0383.65058MR520174
- [9] J.E. Dennis and R.B. Schnabel, Numerical methods for unconstrained optimisation and non-linear equations. Prentice-Hall Inc., New Jersey ( 1983). Zbl0579.65058
- [10] V. Girault and P. Raviart, The Finite Element Method for Navier-Stokes Equations: Theory and Algorithms. Springer-Verlag, New York ( 1986). Zbl0585.65077MR851383
- [11] M. Gunzburger and S. Manservisi, Analysis and approximation of the velocity tracking problem for Navier-Stokes flows with distributed control. SIAM J. Numer. Anal. (to appear). Zbl0963.35150MR1759904
- [12] M. Gunzburger and S. Manservisi, The velocity tracking problem for for Navier-Stokes flows with bounded distributed control. SIAM J. Control Optim. (to appear). Zbl0938.35118MR1720145
- [13] J. Haslinger and P. Neittaanmäki, Finite Element Approximation for Optimal Shape Design. Wiley, Chichester ( 1988). Zbl0713.73062MR982710
- [14] K. Heusermann and S. Manservisi, Optimal design for heat radiative transfer systems. Comput. Methods Appl. Mech. Engrg. (to appear). Zbl0952.49035
- [15] F.P. Incropera and D.P. DeWitt, Fundamentals of Heat and Mass Transfer. Wiley, New York ( 1990).
- [16] M. Modest, Radiative heat transfer. McGraw-Hill, New York ( 1993).
- [17] O. Pironneau, Optimal shape design in fluid mechanics. Thesis, University of Paris ( 1976).
- [18] O. Pironneau, On optimal design in fluid mechanics. J. Fluid. Mech. 64 ( 1974) 97-110. Zbl0281.76020MR347229
- [19] O. Pironneau, Optimal shape design for elliptic systems. Springer, Berlin ( 1984). Zbl0534.49001MR725856
- [20] R.E. Showalter, Hilbert Space Methods for Partial Differential Equations. Electron. J. Differential Equations ( 1994) http://ejde.math.swt.edu/mono-toc.html Zbl0991.35001MR1302484
- [21] J. Sokolowski and J. Zolesio, Introduction to shape optimisation: Shape sensitivity analysis. Springer, Berlin ( 1992). Zbl0761.73003
- [22] T. Tiihonen, Stefan-Boltzmann radiation on Non-convex Surfaces. Math. Methods Appl. Sci. 20 ( 1997) 47-57. Zbl0872.35044MR1429330
- [23] T. Tiihonen, Finite Element Approximations for a Beat Radiation Problem. Report 7/ 1995, Dept. of Mathematics, University of Jyväskylä ( 1995).
- [24] V. Tikhomirov, Fundamental Principles of the Theory of Extremal Problems. Wiley, Chichester ( 1986). Zbl0595.49001MR866483
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.