3D-2D asymptotic analysis for micromagnetic thin films
Roberto Alicandro; Chiara Leone
ESAIM: Control, Optimisation and Calculus of Variations (2001)
- Volume: 6, page 489-498
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topAlicandro, Roberto, and Leone, Chiara. "3D-2D asymptotic analysis for micromagnetic thin films." ESAIM: Control, Optimisation and Calculus of Variations 6 (2001): 489-498. <http://eudml.org/doc/90604>.
@article{Alicandro2001,
abstract = {$\Gamma $-convergence techniques and relaxation results of constrained energy functionals are used to identify the limiting energy as the thickness $\varepsilon $ approaches zero of a ferromagnetic thin structure $\Omega _\varepsilon =\omega \times (-\varepsilon ,\varepsilon )$, $\omega \subset \mathbb \{R\}^2$, whose energy is given by\[ \{\mathcal \{E\}\}\_\{\varepsilon \}(\{\overline\{m\}\})=\{1\over \varepsilon \}\int \_\{\Omega \_\{\varepsilon \}\}\left(W(\{\overline\{m\}\},\nabla \{\overline\{m\}\}) +\{1\over 2\}\nabla \{\overline\{u\}\}\cdot \{\overline\{m\}\}\right)\,\{\rm d\}x \]subject to\[ \text\{div\}(-\nabla \{\overline\{u\}\} +\{\overline\{m\}\}\chi \_\{\Omega \_\varepsilon \})=0 \quad \text\{on\} \mathbb \{R\}^3, \]and to the constraint\[ |\overline\{m\}|=1 \text\{on\} \Omega \_\varepsilon , \]where $W$ is any continuous function satisfying $p$-growth assumptions with $p> 1$. Partial results are also obtained in the case $p=1$, under an additional assumption on $W$.},
author = {Alicandro, Roberto, Leone, Chiara},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {$\Gamma $-limit; thin films; micromagnetics; relaxation of constrained functionals; Gamma-limit},
language = {eng},
pages = {489-498},
publisher = {EDP-Sciences},
title = {3D-2D asymptotic analysis for micromagnetic thin films},
url = {http://eudml.org/doc/90604},
volume = {6},
year = {2001},
}
TY - JOUR
AU - Alicandro, Roberto
AU - Leone, Chiara
TI - 3D-2D asymptotic analysis for micromagnetic thin films
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 2001
PB - EDP-Sciences
VL - 6
SP - 489
EP - 498
AB - $\Gamma $-convergence techniques and relaxation results of constrained energy functionals are used to identify the limiting energy as the thickness $\varepsilon $ approaches zero of a ferromagnetic thin structure $\Omega _\varepsilon =\omega \times (-\varepsilon ,\varepsilon )$, $\omega \subset \mathbb {R}^2$, whose energy is given by\[ {\mathcal {E}}_{\varepsilon }({\overline{m}})={1\over \varepsilon }\int _{\Omega _{\varepsilon }}\left(W({\overline{m}},\nabla {\overline{m}}) +{1\over 2}\nabla {\overline{u}}\cdot {\overline{m}}\right)\,{\rm d}x \]subject to\[ \text{div}(-\nabla {\overline{u}} +{\overline{m}}\chi _{\Omega _\varepsilon })=0 \quad \text{on} \mathbb {R}^3, \]and to the constraint\[ |\overline{m}|=1 \text{on} \Omega _\varepsilon , \]where $W$ is any continuous function satisfying $p$-growth assumptions with $p> 1$. Partial results are also obtained in the case $p=1$, under an additional assumption on $W$.
LA - eng
KW - $\Gamma $-limit; thin films; micromagnetics; relaxation of constrained functionals; Gamma-limit
UR - http://eudml.org/doc/90604
ER -
References
top- [1] A. Braides and A. Defranceschi, Homogenization of Multiple Integrals. Oxford University Press, Oxford (1998). Zbl0911.49010MR1684713
- [2] A. Braides and I. Fonseca, Brittle thin films, Preprint CNA-CMU. Pittsburgh (1999). Zbl0999.49012MR1851742
- [3] A. Braides, I. Fonseca and G. Francfort, 3D-2D asymptotic analysis for inhomogeneous thin films, Preprint CNA-CMU. Pittsburgh (1999). Zbl0987.35020MR1836533
- [4] W.F. Brown, Micromagnetics. John Wiley and Sons, New York (1963).
- [5] C. Castaing and M. Valadier, Convex analysis and measurable multifunctions. Springer-Verlag, New York, Lecture Notes in Math. 580 (1977). Zbl0346.46038MR467310
- [6] B. Dacorogna, Direct methods in Calculus of Variations. Springer-Verlag, Berlin (1989). Zbl0703.49001MR990890
- [7] B. Dacorogna, I. Fonseca, J. Malỳ and K. Trivisa, Manifold constrained variational problems. Calc. Var. 9 (1999) 185-206. Zbl0935.49006MR1725201
- [8] G. Dal Maso, An Introduction to -convergence. Birkhäuser, Boston (1993). Zbl0816.49001MR1201152
- [9] I. Fonseca and G. Francfort, 3D-2D asymptotic analysis of an optimal design problem for thin films. J. Reine Angew. Math. 505 (1998) 173-202. Zbl0917.73052MR1662252
- [10] I. Fonseca and G. Francfort, On the inadequacy of the scaling of linear elasticity for 3D-2D asymptotic in a nonlinear setting, Preprint CNA-CMU. Pittsburgh (1999). Zbl1029.35216MR1831435
- [11] I. Fonseca and S. Müller, Quasi-convex integrands and lower semicontinuity in . SIAM J. Math. Anal. 23 (1992) 1081-1098. Zbl0764.49012MR1177778
- [12] G. Gioia and R.D. James, Micromagnetics of very thin films. Proc. Roy. Soc. Lond. Ser. A 453 (1997) 213-223.
- [13] C.B. Morrey, Quasiconvexity and the semicontinuity of multiple integrals. Pacific J. Math. 2 (1952) 25-53. Zbl0046.10803MR54865
- [14] C.B. Morrey, Multiple integrals in the Calculus of Variations. Springer-Verlag, Berlin (1966). Zbl0142.38701MR202511
Citations in EuDML Documents
top- Jean-François Babadjian, Vincent Millot, Homogenization of variational problems in manifold valued Sobolev spaces
- Domenico Mucci, Relaxation of isotropic functionals with linear growth defined on manifold constrained Sobolev mappings
- Domenico Mucci, Relaxation of isotropic functionals with linear growth defined on manifold constrained Sobolev mappings
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.