Equi-integrability results for 3D-2D dimension reduction problems
ESAIM: Control, Optimisation and Calculus of Variations (2010)
- Volume: 7, page 443-470
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topBocea, Marian, and Fonseca, Irene. "Equi-integrability results for 3D-2D dimension reduction problems." ESAIM: Control, Optimisation and Calculus of Variations 7 (2010): 443-470. <http://eudml.org/doc/90631>.
@article{Bocea2010,
abstract = {
3D-2D asymptotic analysis for thin structures rests on the mastery
of scaled gradients $\left( \nabla _\{\alpha\}u_\varepsilon\big|
\frac\{1\}\{\varepsilon\}\nabla _3 u_\varepsilon\right) $ bounded in $L^p (\Omega;
\mathbb\{R\}^9 ), \ 1 < p < +\infty .$ Here it is shown that, up to a
subsequence, $u_\varepsilon$ may be decomposed as $w_\varepsilon+ z_\varepsilon,$
where $z_\varepsilon$ carries all the concentration effects, i.e.$\left\\{ \left| \left( \nabla _\{\alpha \}w_\varepsilon| \frac\{1\}\{\varepsilon
\}\nabla _3 w_\varepsilon\right) \right| ^\{p\} \right\\} $ is
equi-integrable, and $w_\varepsilon$ captures the oscillatory behavior,
i.e.$z_\varepsilon\to 0$ in measure. In addition, if $\\{ u_\varepsilon\\} $ is
a recovering sequence then $z_\varepsilon= z_\varepsilon(x_\alpha )$ nearby
$\partial \Omega.$},
author = {Bocea, Marian, Fonseca, Irene},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {Equi-integrability; dimension reduction; lower
semicontinuity; maximal function; oscillations; concentrations;
quasiconvexity.; equi-integrability; lower semicontinuity; quasiconvexity},
language = {eng},
month = {3},
pages = {443-470},
publisher = {EDP Sciences},
title = {Equi-integrability results for 3D-2D dimension reduction problems},
url = {http://eudml.org/doc/90631},
volume = {7},
year = {2010},
}
TY - JOUR
AU - Bocea, Marian
AU - Fonseca, Irene
TI - Equi-integrability results for 3D-2D dimension reduction problems
JO - ESAIM: Control, Optimisation and Calculus of Variations
DA - 2010/3//
PB - EDP Sciences
VL - 7
SP - 443
EP - 470
AB -
3D-2D asymptotic analysis for thin structures rests on the mastery
of scaled gradients $\left( \nabla _{\alpha}u_\varepsilon\big|
\frac{1}{\varepsilon}\nabla _3 u_\varepsilon\right) $ bounded in $L^p (\Omega;
\mathbb{R}^9 ), \ 1 < p < +\infty .$ Here it is shown that, up to a
subsequence, $u_\varepsilon$ may be decomposed as $w_\varepsilon+ z_\varepsilon,$
where $z_\varepsilon$ carries all the concentration effects, i.e.$\left\{ \left| \left( \nabla _{\alpha }w_\varepsilon| \frac{1}{\varepsilon
}\nabla _3 w_\varepsilon\right) \right| ^{p} \right\} $ is
equi-integrable, and $w_\varepsilon$ captures the oscillatory behavior,
i.e.$z_\varepsilon\to 0$ in measure. In addition, if $\{ u_\varepsilon\} $ is
a recovering sequence then $z_\varepsilon= z_\varepsilon(x_\alpha )$ nearby
$\partial \Omega.$
LA - eng
KW - Equi-integrability; dimension reduction; lower
semicontinuity; maximal function; oscillations; concentrations;
quasiconvexity.; equi-integrability; lower semicontinuity; quasiconvexity
UR - http://eudml.org/doc/90631
ER -
References
top- E. Acerbi and N. Fusco, Semicontinuity problems in the calculus of variations. Arch. Rational. Mech. Anal.86 (1984) 125-145.
- E. Acerbi and N. Fusco, An approximation lemma for W1,pfunctions, in Material Instabilities in Continuum Mechanics and Related Mathematical Problems, edited by J.M. Ball. Heriot-Watt University, Oxford (1988).
- E. Anzelotti, S. Baldo and D. Percivale, Dimensional reduction in variational problems, asymptotic developments in -convergence, and thin structures in elasticity. Asymptot. Anal.9 (1994) 61-100.
- E.J. Balder, A general approach to lower semicontinuity and lower closure in optimal control theory. SIAM J. Control Optim.22 (1984) 570-598.
- J.M. Ball, A version of the fundamental theorem for Young mesures, in PDE's and Continuum Models of Phase Transitions, edited by M. Rascle, D. Serre and M. Slemrod. Springer-Verlag, Berlin, Lecture Notes in Phys.344 (1989) 207-215.
- H. Berliocchi and J.-M. Lasry, Intégrands normales et mesures paramétrées en calcul des variations. Bull. Soc. Math. France101 (1973) 129-184.
- K. Bhattacharya and A. Braides, Thin films with many small cracks. Preprint (2000).
- K. Bhattacharya, I. Fonseca and G. Francfort, An asymptotic study of the debonding of thin films. Arch. Rational. Mech. Anal.161 (2002) 205-229.
- K. Bhattacharya and R.D. James, A theory of thin films of martensitic materials with applications to microactuators. J. Mech. Phys. Solids47 (1999) 531-576.
- A. Braides, Private communication.
- A. Braides, I. Fonseca and G. Francfort, 3D-2D asymptotic analysis for inhomogeneous thin films. Indiana Univ. Math. J.49 (2000) 1367-1404.
- A. Braides and I. Fonseca, Brittle thin films. Appl. Math. Optim.44 (2001) 299-323.
- S. Conti, I. Fonseca and G. Leoni, A-convergence result for the two-gradient theory of phase transitions, Preprint 01-CNA-008. Center for Nonlinear Analysis, Carnegie Mellon University (2001). Comm. Pure Applied Math. (to appear).
- B. Dacorogna, Direct Methods in the Calculus of Variations. Springer-Verlag (1989).
- I. Fonseca and G. Francfort, On the inadequacy of scaling of linear elasticity for 3D-2D asymptotics in a nonlinear setting. J. Math. Pures Appl.80 (2001) 547-562.
- I. Fonseca and G. Leoni, Modern Methods in the Calculus of Variations with Applications to Nonlinear Continuum Physics. Springer-Verlag (to appear).
- I. Fonseca, S. Müller and P. Pedregal, Analysis of concentration and oscillation effects generated by gradients. SIAM J. Math. Anal. 29 (1998) 736-756.
- D.D. Fox, A. Raoult and J.C. Simo, A justification of nonlinear properly invariant plate theories. Arch. Rational. Mech. Anal.124 (1993) 157-199.
- T. Iwaniec and C. Sbordone, On the integrability of the Jacobian under minimal hypotheses. Arch. Rational. Mech. Anal.119 (1992) 129-143.
- D. Kinderlehrer and P. Pedregal, Characterizations of Young mesures generated by gradients. Arch. Rational. Mech. Anal.115 (1991) 329-365.
- D. Kinderlehrer and P. Pedregal, Gradient Young mesures generated by sequences in Sobolev spaces. J. Geom. Anal.4 (1994) 59-90.
- J. Kristensen, Finite functionals and Young measures generated by gradients of Sobolev functions. Mathematical Institute, Technical University of Denmark, Mat-Report No. 1994-34 (1994).
- J. Kristensen, Lower semicontinuity in spaces of weakly differentiable functions. Math. Ann.313 (1999) 653-710.
- H. Le Dret and A. Raoult, The nonlinear membrane model as variational limit of nonlinear three-dimensional elasticity. J. Math. Pures Appl.74 (1995) 549-578.
- H. Le Dret and A. Raoult, Variational convergence for nonlinear shell models with directors and related semicontinuity and relaxation results. Arch. Rational. Mech. Anal.154 (2000) 101-134.
- F.C. Liu, A Luzin type property of Sobolev functions. Indiana Univ. Math. J.26 (1997) 645-651.
- P. Pedregal, Parametrized mesures and Variational Principles. Birkhäuser, Boston (1997).
- E.M. Stein, Singular integrals and differentiability properties of functions. Princeton University Press (1970).
- L. Tartar, Compensated compactness and applications to partial differential equations, in Nonlinear Analysis and Mechanics: Heriot-Watt Symposium, edited by R. Knops. Longman, Harlow, Pitman Res. Notes Math. Ser.39 (1979) 136-212.
- L. Tartar, The compensated compactness method applied to systems of conservation laws, in Systems of Nonlinear Partial Differential Equations, edited by J.M. Ball. Riedel (1983).
- L. Tartar, Étude des oscillations dans les équations aux dérivées partielles nonlinéaires. Springer-Verlag, Berlin, Lecture Notes in Phys.195 (1994) 384-412.
- Y.C. Shu, Heterogeneous thin films of martensitic materials. Arch. Rational. Mech. Anal.153 (2000) 39-90.
- L.C. Young, Generalized curves and the existence of an attained absolute minimum in the calculus of variations. C. R. Soc. Sci. Lettres de Varsovie, Classe III30 (1937) 212-234.
- L.C. Young, Lectures on the calculus of variations and optimal control theory. W.B. Saunders (1969).
- W.P. Ziemer, Weakly Differentiable Functions. Sobolev spaces and functions of bounded variation. Springer-Verlag, Berlin (1989).
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.