Uniqueness of renormalized solutions to nonlinear elliptic equations with a lower order term and right-hand side in L1(Ω)
M. F. Betta; A. Mercaldo; F. Murat; M. M. Porzio
ESAIM: Control, Optimisation and Calculus of Variations (2010)
- Volume: 8, page 239-272
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topBetta, M. F., et al. "Uniqueness of renormalized solutions to nonlinear elliptic equations with a lower order term and right-hand side in L1(Ω) ." ESAIM: Control, Optimisation and Calculus of Variations 8 (2010): 239-272. <http://eudml.org/doc/90648>.
@article{Betta2010,
abstract = {
In this paper we prove uniqueness results for the renormalized
solution, if it exists, of a class of
non coercive nonlinear problems whose prototype is
$$
\left\\{
- \hbox\{div\}( a(x)(1+|\nabla u|^\{2\})^\{\frac\{p-2\}\{2\}\}\nabla u)
+b(x)(1+|\nabla u|^\{2\})^\{\frac\{\lambda\}\{2\}\} =f \hbox\{in\}
\quad
\Omega,
u=0 \hbox\{on\} \quad \partial\Omega,
\right.
$$
where Ω is a bounded open subset of $\{\mathbb\{R\}\}^N$, N > 2, 2-1/N < p < N , a belongs to L∞(Ω),
$a(x)
\ge
\alpha_0>0$,
f is a function in
L1(Ω), b is a function in $L^r(\Omega)$ and 0 ≤ λ < λ *(N,p,r),
for some r and λ *(N,p,r).
},
author = {Betta, M. F., Mercaldo, A., Murat, F., Porzio, M. M.},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {Uniqueness;
nonlinear elliptic equations; noncoercive problems; data in L1.; uniqueness; nonlinear elliptic equations; data in },
language = {eng},
month = {3},
pages = {239-272},
publisher = {EDP Sciences},
title = {Uniqueness of renormalized solutions to nonlinear elliptic equations with a lower order term and right-hand side in L1(Ω) },
url = {http://eudml.org/doc/90648},
volume = {8},
year = {2010},
}
TY - JOUR
AU - Betta, M. F.
AU - Mercaldo, A.
AU - Murat, F.
AU - Porzio, M. M.
TI - Uniqueness of renormalized solutions to nonlinear elliptic equations with a lower order term and right-hand side in L1(Ω)
JO - ESAIM: Control, Optimisation and Calculus of Variations
DA - 2010/3//
PB - EDP Sciences
VL - 8
SP - 239
EP - 272
AB -
In this paper we prove uniqueness results for the renormalized
solution, if it exists, of a class of
non coercive nonlinear problems whose prototype is
$$
\left\{
- \hbox{div}( a(x)(1+|\nabla u|^{2})^{\frac{p-2}{2}}\nabla u)
+b(x)(1+|\nabla u|^{2})^{\frac{\lambda}{2}} =f \hbox{in}
\quad
\Omega,
u=0 \hbox{on} \quad \partial\Omega,
\right.
$$
where Ω is a bounded open subset of ${\mathbb{R}}^N$, N > 2, 2-1/N < p < N , a belongs to L∞(Ω),
$a(x)
\ge
\alpha_0>0$,
f is a function in
L1(Ω), b is a function in $L^r(\Omega)$ and 0 ≤ λ < λ *(N,p,r),
for some r and λ *(N,p,r).
LA - eng
KW - Uniqueness;
nonlinear elliptic equations; noncoercive problems; data in L1.; uniqueness; nonlinear elliptic equations; data in
UR - http://eudml.org/doc/90648
ER -
References
top- P. Bénilan, L. Boccardo, T. Gallouët, R. Gariepy, M. Pierre and J.L. Vazquez, An L1-theory of existence and uniqueness of solutions of nonlinear elliptic equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci.22 (1995) 241-273.
- M.F. Betta, A. Mercaldo, F. Murat and M.M. Porzio, Existence and uniqueness results for nonlinear elliptic problems with a lower order term and measure datum. C. R. Acad. Sci. Paris Sér. I Math. 332 (to appear).
- M.F. Betta, A. Mercaldo, F. Murat and M.M. Porzio, Existence of renormalized solutions to nonlinear elliptic equations with a lower order term and right-hand side measure. J. Math. Pures Appl. (to appear).
- M.F. Betta, A. Mercaldo, F. Murat and M.M. Porzio, Uniqueness results for nonlinear elliptic equations with a lower order term (to appear).
- L. Boccardo, T. Gallouët and L. Orsina, Existence and uniqueness of entropy solutions for nonlinear elliptic equations with measure data. Ann. Inst. H. Poincaré Anal. Non Linéaire13 (1996) 539-551.
- G. Bottaro and M.E. Marina, Problema di Dirichlet per equazioni ellittiche di tipo variazionale su insiemi non limitati. Boll. Un. Mat. Ital.8 (1973) 46-56.
- A. Dall'Aglio, Approximated solutions of equations with L1 data. Application to the H-convergence of quasi-linear parabolic equations. Ann. Mat. Pura Appl.170 (1996) 207-240.
- G. Dal Maso, F. Murat, L. Orsina and A. Prignet, Renormalized solutions for elliptic equations with general measure data. Ann. Scuola Norm. Sup. Pisa Cl. Sci.28 (1999) 741-808.
- G. Dolzmann, N. Hungerbühler and S. Müller, Uniqueness and maximal regularity for nonlinear elliptic systems of n-Laplace type with measure valued right-hand side. J. Reine Angew. Math.520 (2000) 1-35.
- A. Fiorenza and C. Sbordone, Existence and uniqueness results for solutions of nonlinear equations with right-hand side in L1(Ω). Studia Math.127 (1998) 223-231.
- L. Greco, T. Iwaniec and C. Sbordone, Inverting the p-harmonic operator. Manuscripta Math.92 (1997) 249-258.
- O. Guibé, Remarks on the uniqueness of comparable renormalized solutions of elliptic equations with measure data. Ann. Mat. Pura Appl. Ser. IV180 (2002) 441-449.
- P.-L. Lions and F. Murat, Solutions renormalisées d'équations elliptiques non linéaires (to appear).
- F. Murat, Soluciones renormalizadas de EDP elipticas no lineales, Preprint 93023. Laboratoire d'Analyse Numérique de l'Université Paris VI (1993).
- F. Murat, Équations elliptiques non linéaires avec second membre L1 ou mesure, in Actes du 26e Congrès National d'Analyse Numérique. Les Karellis, France (1994) A12-A24.
- A. Prignet, Remarks on existence and uniqueness of solutions of elliptic problems with right-hand side measures. Rend. Mat. Appl.15 (1995) 321-337.
- J. Serrin, Pathological solutions of elliptic differential equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci.18 (1964) 385-387.
- G. Stampacchia, Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus. Ann. Inst. Fourier (Grenoble)15 (1965) 189-258.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.