Local controllability of a 1-D tank containing a fluid modeled by the shallow water equations

Jean-Michel Coron

ESAIM: Control, Optimisation and Calculus of Variations (2010)

  • Volume: 8, page 513-554
  • ISSN: 1292-8119

Abstract

top
We consider a 1-D tank containing an inviscid incompressible irrotational fluid. The tank is subject to the control which consists of horizontal moves. We assume that the motion of the fluid is well-described by the Saint–Venant equations (also called the shallow water equations). We prove the local controllability of this nonlinear control system around any steady state. As a corollary we get that one can move from any steady state to any other steady state.

How to cite

top

Coron, Jean-Michel. "Local controllability of a 1-D tank containing a fluid modeled by the shallow water equations." ESAIM: Control, Optimisation and Calculus of Variations 8 (2010): 513-554. <http://eudml.org/doc/90659>.

@article{Coron2010,
abstract = { We consider a 1-D tank containing an inviscid incompressible irrotational fluid. The tank is subject to the control which consists of horizontal moves. We assume that the motion of the fluid is well-described by the Saint–Venant equations (also called the shallow water equations). We prove the local controllability of this nonlinear control system around any steady state. As a corollary we get that one can move from any steady state to any other steady state. },
author = {Coron, Jean-Michel},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {Controllability; hyperbolic systems; shallow water.; Saint-Venant equations},
language = {eng},
month = {3},
pages = {513-554},
publisher = {EDP Sciences},
title = {Local controllability of a 1-D tank containing a fluid modeled by the shallow water equations},
url = {http://eudml.org/doc/90659},
volume = {8},
year = {2010},
}

TY - JOUR
AU - Coron, Jean-Michel
TI - Local controllability of a 1-D tank containing a fluid modeled by the shallow water equations
JO - ESAIM: Control, Optimisation and Calculus of Variations
DA - 2010/3//
PB - EDP Sciences
VL - 8
SP - 513
EP - 554
AB - We consider a 1-D tank containing an inviscid incompressible irrotational fluid. The tank is subject to the control which consists of horizontal moves. We assume that the motion of the fluid is well-described by the Saint–Venant equations (also called the shallow water equations). We prove the local controllability of this nonlinear control system around any steady state. As a corollary we get that one can move from any steady state to any other steady state.
LA - eng
KW - Controllability; hyperbolic systems; shallow water.; Saint-Venant equations
UR - http://eudml.org/doc/90659
ER -

References

top
  1. J.-M. Coron, Global asymptotic stabilization for controllable systems without drift. Math. Control Signals Systems5 (1992) 295-312.  
  2. J.-M. Coron, Contrôlabilité exacte frontière de l'équation d'Euler des fluides parfaits incompressibles bidimensionnels. C. R. Acad. Sci. Paris317 (1993) 271-276.  
  3. J.-M. Coron, On the controllability of 2-D incompressible perfect fluids. J. Math. Pures Appl.75 (1996) 155-188.  
  4. J.-M. Coron, On the controllability of the 2-D incompressible Navier-Stokes equations with the Navier slip boundary conditions. ESAIM: COCV1 (1996) 35-75.  
  5. J.-M. Coron and A. Fursikov, Global exact controllability of the 2D Navier-Stokes equations on a manifold without boundary. Russian J. Math. Phys.4 (1996) 429-448.  
  6. R. Courant and D. Hilbert, Methods of mathematical physics, II. Interscience publishers, John Wiley & Sons, New York London Sydney (1962).  
  7. L. Debnath, Nonlinear water waves. Academic Press, San Diego (1994).  
  8. F. Dubois, N. Petit and P. Rouchon, Motion planning and nonlinear simulations for a tank containing a fluid, ECC 99.  
  9. A.V. Fursikov and O.Yu. Imanuvilov, Exact controllability of the Navier-Stokes and Boussinesq equations. Russian Math. Surveys. 54 (1999) 565-618.  
  10. O. Glass, Contrôlabilité exacte frontière de l'équation d'Euler des fluides parfaits incompressibles en dimension 3. C. R. Acad. Sci. Paris Sér. I325 (1997) 987-992.  
  11. O. Glass, Exact boundary controllability of 3-D Euler equation. ESAIM: COCV5 (2000) 1-44.  
  12. L. Hörmander, Lectures on nonlinear hyperbolic differential equations. Springer-Verlag, Berlin Heidelberg, Math. Appl.26 (1997).  
  13. Th. Horsin, On the controllability of the Burgers equation. ESAIM: COCV3 (1998) 83-95.  
  14. J.-L. Lions, Are there connections between turbulence and controllability?, in 9th INRIA International Conference. Antibes (1990).  
  15. J.-L. Lions, Exact controllability for distributed systems. Some trends and some problems, in Applied and industrial mathematics, Proc. Symp., Venice/Italy 1989. D. Reidel Publ. Co. Math. Appl.56 (1991) 59-84.  
  16. J.-L. Lions, On the controllability of distributed systems. Proc. Natl. Acad. Sci. USA94 (1997) 4828-4835.  
  17. J.-L. Lions and E. Zuazua, Approximate controllability of a hydro-elastic coupled system. ESAIM: COCV1 (1995) 1-15.  
  18. J.-L. Lions and E. Zuazua, Exact boundary controllability of Galerkin's approximations of Navier-Stokes equations. Ann. Sc. Norm. Super. Pisa Cl. Sci. IV 26 (1998) 605-621.  
  19. Li Ta Tsien and Yu Wen-Ci, Boundary value problems for quasilinear hyperbolic systems. Duke university, Durham, Math. Ser.V (1985).  
  20. A. Majda, Compressible fluid flow and systems of conservation laws in several space variables. Sringer-Verlag, New York Berlin Heidelberg Tokyo, Appl. Math. Sci.53 (1984).  
  21. N. Petit and P. Rouchon, Dynamics and solutions to some control problems for water-tank systems. Preprint, CIT-CDS 00-004.  
  22. A.J.C.B. de Saint-Venant, Théorie du mouvement non permanent des eaux, avec applications aux crues des rivières et à l'introduction des marées dans leur lit. C. R. Acad. Sci. Paris53 (1871) 147-154.  
  23. D. Serre, Systèmes de lois de conservations, I et II. Diderot Éditeur, Arts et Sciences, Paris, New York, Amsterdam (1996).  
  24. E.D. Sontag, Control of systems without drift via generic loops. IEEE Trans. Automat. Control. 40 (1995) 1210-1219.  

NotesEmbed ?

top

You must be logged in to post comments.