Some regularity results for minimal crystals
L. Ambrosio; M. Novaga; E. Paolini
ESAIM: Control, Optimisation and Calculus of Variations (2010)
- Volume: 8, page 69-103
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topReferences
top- F.J. Almgren, Optimal isoperimetric inequalities. Indiana U. Math. J.35 (1986) 451-547.
- F.J. Almgren and J. Taylor, Flat flow is motion by crystalline curvature for curves with crystalline energies. J. Diff. Geom.42 (1995) 1-22.
- F.J. Almgren, J. Taylor and L. Wang, Curvature-driven flows: A variational approach. SIAM J. Control Optim.31 (1993) 387-437.
- M. Amar and G. Bellettini, A notion of total variation depending on a metric with discontinuous coefficients. Ann. Inst. H. Poincaré Anal. Non Linéaire11 (1994) 91-133.
- L. Ambrosio, Corso introduttivo alla Teoria Geometrica della Misura ed alle Superfici Minime. Scuola Normale Superiore of Pisa (1997).
- L. Ambrosio, N. Fusco and D. Pallara, Functions of bounded variation and free discontinuity problems. Oxford U. P. (2000).
- L. Ambrosio, V. Caselles, S. Masnou and J.M. Morel, Connected Components of Sets of Finite Perimeter and Applications to Image Processing. J. EMS3 (2001) 213-266.
- L. Ambrosio and E. Paolini, Partial regularity for the quasi minimizers of perimeter. Ricerche Mat.XLVIII (1999) 167-186.
- G. Bellettini, M. Paolini and S. Venturini, Some results on surface measures in Calculus of Variations. Ann. Mat. Pura Appl.170 (1996) 329-359.
- E. Bombieri, Regularity theory for almost minimal currents. Arch. Rational Mech. Anal.78 (1982) 99-130.
- H. Brezis, Opérateurs Maximaux Monotones. North Holland, Amsterdam (1973).
- Y.D. Burago and V.A. Zalgaller, Geometric inequalities. Springer-Verlag, Berlin, Grundlehren der Mathematischen WissenschaftenXIV (1988).
- G. David and S. Semmes, Uniform rectifiability and quasiminimizing sets of arbitrary codimension. Mem. Amer. Math. Soc.687 (2000).
- E. De Giorgi, Nuovi teoremi relativi alle misure (r-1)-dimensionali in uno spazio a r dimensioni. Ricerche Mat.4 (1955) 95-113.
- H. Federer, A note on the Gauss-Green theorem. Proc. Amer. Math. Soc.9 (1958) 447-451.
- H. Federer, Geometric Measure Theory. Springer-Verlag, Berlin (1969).
- W.H. Fleming, Functions with generalized gradient and generalized surfaces. Ann. Mat.44 (1957) 93-103.
- I. Fonseca, The Wulff theorem revisited. Proc. Roy. Soc. London432 (1991) 125-145.
- I. Fonseca and S. Müller, A uniqueness proof for the Wulff theorem. Proc. Roy. Soc. Edinburgh119 (1991) 125-136.
- E. Giusti, Minimal surfaces and functions of bounded variation. Birkhäuser, Boston-Basel-Stuttgart, Monogr. in Math.80 (1984) XII.
- B. Kirchheim, Rectifiable metric spaces: Local structure and regularity of the Hausdorff measure. Proc. AMS121 (1994) 113-123.
- S. Luckhaus and L. Modica, The Gibbs-Thompson relation within the gradient theory of phase transitions. Arch. Rational Mech. Anal.107 (1989) 71-83.
- F. Morgan, The cone over the Clifford torus in is -minimizing. Math. Ann.289 (1991) 341-354.
- F. Morgan, C. French and S. Greenleaf, Wulff clusters in R2. J. Geom. Anal.8 (1998) 97-115.
- A.P. Morse, Perfect blankets. Trans. Amer. Math. Soc.61 (1947) 418-442.
- J. Taylor, Crystalline variational problems. Bull. Amer. Math. Soc. (N.S.)84 (1978) 568-588.
- J. Taylor, Motion of curves by crystalline curvature, including triple junctions and boundary points. Differential Geometry, Proc. Symp. Pure Math.54 (1993) 417-438.
- J. Taylor, Unique structure of solutions to a class of nonelliptic variational problems. Proc. Symp. Pure Math.27 (1975) 419-427.
- J. Taylor and J.W. Cahn, Catalog of saddle shaped surfaces in crystals. Acta Metall.34 (1986) 1-12.