# Asymmetric heteroclinic double layers

ESAIM: Control, Optimisation and Calculus of Variations (2010)

- Volume: 8, page 965-1005
- ISSN: 1292-8119

## Access Full Article

top## Abstract

top## How to cite

topSchatzman, Michelle. "Asymmetric heteroclinic double layers." ESAIM: Control, Optimisation and Calculus of Variations 8 (2010): 965-1005. <http://eudml.org/doc/90681>.

@article{Schatzman2010,

abstract = {
Let W be a non-negative function of class C3 from $\xR^2$ to
$\xR$, which vanishes exactly at two points a and b. Let
S1(a, b) be the set of functions of a real variable which tend
to a at -∞
and to b at +∞ and whose one dimensional energy
$$
E\_1(v)=\int\_\xR\bigl[W(v)+\lvert v'\rvert^2/2\bigr]\,\xdif x
$$
is finite.
Assume that there exist two isolated minimizers z+ and z-
of the energy E1
over S1(a, b). Under a mild coercivity condition on the
potential W and a generic spectral condition on the linearization
of the
one-dimensional Euler–Lagrange operator at z+ and z-, it is
possible to prove that there exists a function u
from $\xR^2$ to itself which satisfies the equation
$$
-\Delta u + \xDif W(u)^\mathsf\{T\}=0,
$$
and the boundary conditions
$$
\lim\_\{x\_2\to +\infty\} u(x\_1,x\_2)=z\_+(x\_1-m\_+),\phantom\{\mathbf\{a\}\}
\lim\_\{x\_2\to
-\infty\} u(x\_1,x\_2)=z\_-(x\_1-m\_-),
\lim\_\{x\_1\to -\infty\}u(x\_1,x\_2)=\mathbf\{a\},\phantom\{z\_+(x\_1-m\_+)\}
\lim\_\{x\_1\to+\infty\}u(x\_1,x\_2)=\mathbf\{b\}.
$$
The above convergences are exponentially fast; the numbers m+
and m- are unknowns of the problem.
},

author = {Schatzman, Michelle},

journal = {ESAIM: Control, Optimisation and Calculus of Variations},

keywords = {Heteroclinic connections; Ginzburg–Landau; elliptic systems
in unbounded domains; non convex optimization.; heteroclinic connections; Ginzburg-Landau; elliptic systems in unbounded domains; non-convex optimization},

language = {eng},

month = {3},

pages = {965-1005},

publisher = {EDP Sciences},

title = {Asymmetric heteroclinic double layers},

url = {http://eudml.org/doc/90681},

volume = {8},

year = {2010},

}

TY - JOUR

AU - Schatzman, Michelle

TI - Asymmetric heteroclinic double layers

JO - ESAIM: Control, Optimisation and Calculus of Variations

DA - 2010/3//

PB - EDP Sciences

VL - 8

SP - 965

EP - 1005

AB -
Let W be a non-negative function of class C3 from $\xR^2$ to
$\xR$, which vanishes exactly at two points a and b. Let
S1(a, b) be the set of functions of a real variable which tend
to a at -∞
and to b at +∞ and whose one dimensional energy
$$
E_1(v)=\int_\xR\bigl[W(v)+\lvert v'\rvert^2/2\bigr]\,\xdif x
$$
is finite.
Assume that there exist two isolated minimizers z+ and z-
of the energy E1
over S1(a, b). Under a mild coercivity condition on the
potential W and a generic spectral condition on the linearization
of the
one-dimensional Euler–Lagrange operator at z+ and z-, it is
possible to prove that there exists a function u
from $\xR^2$ to itself which satisfies the equation
$$
-\Delta u + \xDif W(u)^\mathsf{T}=0,
$$
and the boundary conditions
$$
\lim_{x_2\to +\infty} u(x_1,x_2)=z_+(x_1-m_+),\phantom{\mathbf{a}}
\lim_{x_2\to
-\infty} u(x_1,x_2)=z_-(x_1-m_-),
\lim_{x_1\to -\infty}u(x_1,x_2)=\mathbf{a},\phantom{z_+(x_1-m_+)}
\lim_{x_1\to+\infty}u(x_1,x_2)=\mathbf{b}.
$$
The above convergences are exponentially fast; the numbers m+
and m- are unknowns of the problem.

LA - eng

KW - Heteroclinic connections; Ginzburg–Landau; elliptic systems
in unbounded domains; non convex optimization.; heteroclinic connections; Ginzburg-Landau; elliptic systems in unbounded domains; non-convex optimization

UR - http://eudml.org/doc/90681

ER -

## References

top- S. Alama, L. Bronsard and C. Gui, Stationary layered solutions in ${}^{2}$ for an Allen-Cahn system with multiple well potential. Calc. Var. Partial Diff. Eqs.5 (1997) 359-390.
- I. Fonseca and L. Tartar, The gradient theory of phase transitions for systems with two potential wells. Proc. Roy. Soc. Edinburgh Sect. A111 (1989) 89-102.
- K. Ishige, The gradient theory of the phase transitions in Cahn-Hilliard fluids with Dirichlet boundary conditions. SIAM J. Math. Anal.27 (1996) 620-637.
- T. Kato, Perturbation theory for linear operators. Springer-Verlag, Berlin (1995). Reprint of the 1980 edition.
- L.D. Landau and E.M. Lifchitz, Physique statistique. Ellipses (1994).
- J.-L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications, Vol. 1. Dunod, Paris (1968). Travaux et Recherches Mathématiques, No. 17.
- L. Modica, The gradient theory of phase transitions and the minimal interface criterion. Arch. Rational Mech. Anal.98 (1987) 123-142.
- L. Modica, Gradient theory of phase transitions with boundary contact energy. Ann. Inst. H. Poincaré Anal. Non Linéaire4 (1987) 487-512.
- N.C. Owen, J. Rubinstein and P. Sternberg, Minimizers and gradient flows for singularly perturbed bi-stable potentials with a Dirichlet condition. Proc. Roy. Soc. London Ser. A429 (1990) 505-532.
- M. Reed and B. Simon, Methods of modern mathematical physics. I. Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New York, Second Edition (1980). Functional analysis.
- P. Sternberg, Vector-valued local minimizers of nonconvex variational problems. Rocky Mountain J. Math.21 (1991) 799-807. Current directions in nonlinear partial differential equations. Provo, UT (1987).
- A.I. Volpert, V.A. Volpert and V.A. Volpert, Traveling wave solutions of parabolic systems. American Mathematical Society, Providence, RI, 1994. Translated from the Russian manuscript by James F. Heyda.

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.