Motion planning for a class of boundary controlled linear hyperbolic PDE's involving finite distributed delays

Frank Woittennek; Joachim Rudolph

ESAIM: Control, Optimisation and Calculus of Variations (2010)

  • Volume: 9, page 419-435
  • ISSN: 1292-8119

Abstract

top
Motion planning and boundary control for a class of linear PDEs with constant coefficients is presented. With the proposed method transitions from rest to rest can be achieved in a prescribed finite time. When parameterizing the system by a flat output, the system trajectories can be calculated from the flat output trajectory by evaluating definite convolution integrals. The compact kernels of the integrals can be calculated using infinite series. Explicit formulae are derived employing Mikusiński's operational calculus. The method is illustrated through an application to a model of a Timoshenko beam, which is clamped on a rotating disk and carries a load at its free end.

How to cite

top

Woittennek, Frank, and Rudolph, Joachim. "Motion planning for a class of boundary controlled linear hyperbolic PDE's involving finite distributed delays." ESAIM: Control, Optimisation and Calculus of Variations 9 (2010): 419-435. <http://eudml.org/doc/90703>.

@article{Woittennek2010,
abstract = { Motion planning and boundary control for a class of linear PDEs with constant coefficients is presented. With the proposed method transitions from rest to rest can be achieved in a prescribed finite time. When parameterizing the system by a flat output, the system trajectories can be calculated from the flat output trajectory by evaluating definite convolution integrals. The compact kernels of the integrals can be calculated using infinite series. Explicit formulae are derived employing Mikusiński's operational calculus. The method is illustrated through an application to a model of a Timoshenko beam, which is clamped on a rotating disk and carries a load at its free end. },
author = {Woittennek, Frank, Rudolph, Joachim},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {Flatness; motion planning.; linear hyperbolic PDE; finite distributed delays; flatness; motion planning; Timoshenko beam},
language = {eng},
month = {3},
pages = {419-435},
publisher = {EDP Sciences},
title = {Motion planning for a class of boundary controlled linear hyperbolic PDE's involving finite distributed delays},
url = {http://eudml.org/doc/90703},
volume = {9},
year = {2010},
}

TY - JOUR
AU - Woittennek, Frank
AU - Rudolph, Joachim
TI - Motion planning for a class of boundary controlled linear hyperbolic PDE's involving finite distributed delays
JO - ESAIM: Control, Optimisation and Calculus of Variations
DA - 2010/3//
PB - EDP Sciences
VL - 9
SP - 419
EP - 435
AB - Motion planning and boundary control for a class of linear PDEs with constant coefficients is presented. With the proposed method transitions from rest to rest can be achieved in a prescribed finite time. When parameterizing the system by a flat output, the system trajectories can be calculated from the flat output trajectory by evaluating definite convolution integrals. The compact kernels of the integrals can be calculated using infinite series. Explicit formulae are derived employing Mikusiński's operational calculus. The method is illustrated through an application to a model of a Timoshenko beam, which is clamped on a rotating disk and carries a load at its free end.
LA - eng
KW - Flatness; motion planning.; linear hyperbolic PDE; finite distributed delays; flatness; motion planning; Timoshenko beam
UR - http://eudml.org/doc/90703
ER -

References

top
  1. M. Fliess, J. Lévine, Ph. Martin and P. Rouchon, Flatness and defect of non-linear systems: Introductory theory and examples. Internat. J. Control61 (1995) 1327-1361.  Zbl0838.93022
  2. M. Fliess, Ph. Martin, N. Petit and P. Rouchon, Commande de l'équation des télégraphistes et restauration active d'un signal. Traitement du Signal15 (1998) 619-625.  
  3. M. Fliess and H. Mounier, Controllability and observability of linear delay systems: An algebraic approach. ESAIM: COCV3 (1998) 301-314. (URL: http://www.emath.fr/COCV/).  Zbl0908.93013
  4. M. Fliess and H. Mounier, Tracking control and π -freeness of infinite dimensional linear systems, edited by G. Picci and D.S. Gilliam, Dynamical Systems, Control, Coding, Computer Vision. Birkhäuser (1999) 45-68.  Zbl0918.93010
  5. M. Fliess, H. Mounier, P. Rouchon and J. Rudolph, Controllability and motion planning for linear delay systems with an application to a flexible rod, in Proc. 34th IEEE Conference on Decision and Control. New Orleans (1995) 2046-2051.  
  6. M. Fliess, H. Mounier, P. Rouchon and J. Rudolph, Systèmes linéaires sur les opérateurs de Mikusinski et commande d'une poutre flexible. ESAIM Proc.2 (1997) 183-193. (http://www.emath.fr/proc).  Zbl0898.93018
  7. M. Fliess, H. Mounier, P. Rouchon and J. Rudolph, Controlling the transient of a chemical reactor: A distributed parameter approach, in Proc. Computational Engineering in Systems Application IMACS Multiconference, (CESA'98). Hammamet, Tunisia (1998).  Zbl0906.73046
  8. F. John, Partial Differential Equations, 4th Edition. Springer-Verlag, New York (1991).  
  9. B. Laroche, Ph. Martin and P. Rouchon, Motion planning for the heat equation. Int. J. Robust Nonlinear Control10 (2000) 629-643.  Zbl1022.93025
  10. A.F. Lynch and J. Rudolph, Flachheitsbasierte Randsteuerung parabolischer Systeme mit verteilten Parametern. Automatisierungstechnik48 (2000) 478-486.  
  11. J. Mikusinski, Sur les équations différentielles du calcul opératoire et leurs applications aux équations aux dérivées partielles. Stud. Math.12 (1951) 227-270.  Zbl0044.12701
  12. J. Mikusinski, Operational Calculus, Vol. 1. Pergamon, Oxford & PWN, Warszawa (1983).  
  13. J. Mikusinski and Th.K. Boehme, Operational Calculus, Vol. 2. Pergamon, Oxford & PWN, Warszawa (1987).  Zbl0643.44005
  14. H. Mounier, J. Rudolph, M. Petitot and M. Fliess, A flexible rod as a linear delay system, in Proc. 3rd European Control Conference. Rome, Italy (1995) 3676-3681.  
  15. N. Petit and P. Rouchon, Motion planning for heavy chain systems. SIAM J. Control Optim.40 (2001) 275-495.  Zbl0996.93049
  16. N. Petit and P. Rouchon, Dynamics and solutions to some control problems for water-tank systems. IEEE Trans. Automat. Control AC-47 (2002) 594-609.  
  17. I.G. Petrovskij, Über das Cauchysche Problem für Systeme von partiellen Differentialgleichungen. Mat. Sb.2 (1937) 815-866.  
  18. R. Rothfuß, J. Rudolph and M. Zeitz, Flachheit: Ein neuer Zugang zur Steuerung und Regelung nichtlinearer Systeme. Automatisierungstechnik45 (1997) 517-525.  
  19. W. Rudin, Real and Complex Analysis, 3rd Edition. McGraw-Hill (1987).  Zbl0925.00005
  20. J. Rudolph, Randsteuerung von Wärmetauschern mit örtlich verteilten Parametern: Ein flachheitsbasierter Zugang. Automatisierungstechnik48 (2000) 399-406.  
  21. J. Rudolph and F. Woittennek, Flachheitsbasierte Steuerung eines Timoshenko-Balkens. Z. Angew. Math. Mech.83 (2003) 119-127.  Zbl1090.74033
  22. J.C. Simo, A finite strain beam formulation. The three-dimensional dynamic problem. Part one. Comp. Meths. Appl. Mech.49 (1985) 55-70.  Zbl0583.73037
  23. K. Yosida, Operational Calculus. Springer-Verlag (1984).  
  24. K. Yuan, Control of slew maneuver of a flexible beam mounted non-radially on a rigid hub: A geometrically exact modelling approach, Vol. 204 (1997) 795-806.  Zbl1235.74204

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.