Displaying similar documents to “Boundary stabilization of Maxwell's equations with space-time variable coefficients”

Asymptotic stability of wave equations with memory and frictional boundary dampings

Fatiha Alabau-Boussouira (2008)

Applicationes Mathematicae

Similarity:

This work is concerned with stabilization of a wave equation by a linear boundary term combining frictional and memory damping on part of the boundary. We prove that the energy decays to zero exponentially if the kernel decays exponentially at infinity. We consider a slightly different boundary condition than the one used by M. Aassila et al. [Calc. Var. 15, 2002]. This allows us to avoid the assumption that the part of the boundary where the feedback is active is strictly star-shaped....

Boundary stabilization of Maxwell’s equations with space-time variable coefficients

Serge Nicaise, Cristina Pignotti (2003)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

We consider the stabilization of Maxwell’s equations with space-time variable coefficients in a bounded region with a smooth boundary by means of linear or nonlinear Silver–Müller boundary condition. This is based on some stability estimates that are obtained using the “standard” identity with multiplier and appropriate properties of the feedback. We deduce an explicit decay rate of the energy, for instance exponential, polynomial or logarithmic decays are available for appropriate feedbacks. ...

Stabilisation frontière de problèmes de Ventcel

Amar Heminna (2010)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

The problem of boundary stabilization for the isotropic linear elastodynamic system and the wave equation with Ventcel's conditions are considered (see [12]). The boundary observability and the exact controllability were etablished in [11]. We prove here the enegy decay to zero for the elastodynamic system with stationary Ventcel's conditions by introducing a nonlinear boundary feedback. We also give a boundary feedback leading to arbitrarily large energy decay rates for the elastodynamic...