Numerical minimization of eigenmodes of a membrane with respect to the domain

Édouard Oudet

ESAIM: Control, Optimisation and Calculus of Variations (2010)

  • Volume: 10, Issue: 3, page 315-330
  • ISSN: 1292-8119

Abstract

top
In this paper we introduce a numerical approach adapted to the minimization of the eigenmodes of a membrane with respect to the domain. This method is based on the combination of the Level Set method of S. Osher and J.A. Sethian with the relaxed approach. This algorithm enables both changing the topology and working on a fixed regular grid.

How to cite

top

Oudet, Édouard. "Numerical minimization of eigenmodes of a membrane with respect to the domain." ESAIM: Control, Optimisation and Calculus of Variations 10.3 (2010): 315-330. <http://eudml.org/doc/90732>.

@article{Oudet2010,
abstract = { In this paper we introduce a numerical approach adapted to the minimization of the eigenmodes of a membrane with respect to the domain. This method is based on the combination of the Level Set method of S. Osher and J.A. Sethian with the relaxed approach. This algorithm enables both changing the topology and working on a fixed regular grid. },
author = {Oudet, Édouard},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {Shape optimization; eigenvalue; level set; relaxation.; level set method; relaxation},
language = {eng},
month = {3},
number = {3},
pages = {315-330},
publisher = {EDP Sciences},
title = {Numerical minimization of eigenmodes of a membrane with respect to the domain},
url = {http://eudml.org/doc/90732},
volume = {10},
year = {2010},
}

TY - JOUR
AU - Oudet, Édouard
TI - Numerical minimization of eigenmodes of a membrane with respect to the domain
JO - ESAIM: Control, Optimisation and Calculus of Variations
DA - 2010/3//
PB - EDP Sciences
VL - 10
IS - 3
SP - 315
EP - 330
AB - In this paper we introduce a numerical approach adapted to the minimization of the eigenmodes of a membrane with respect to the domain. This method is based on the combination of the Level Set method of S. Osher and J.A. Sethian with the relaxed approach. This algorithm enables both changing the topology and working on a fixed regular grid.
LA - eng
KW - Shape optimization; eigenvalue; level set; relaxation.; level set method; relaxation
UR - http://eudml.org/doc/90732
ER -

References

top
  1. G. Allaire, Shape optimization by the homogenization method. Springer-Verlag, New York (2001).  Zbl0990.35001
  2. G. Allaire, F. Jouve and A.M. Toader, A level-set method for shape optimization. C. R. Acad. Sci. Paris334 (2002) 1125-1130.  Zbl1115.49306
  3. M. Bendsoe, Optimization of structural Topology, Shape and Material. Springer (1995).  Zbl0822.73001
  4. M. Bendsoe and C. Mota Soares, Topology optimization of structures. Kluwer Academic Press, Dordrechts (1993).  
  5. G. Buttazzo and G. Dal Maso, An Existence Result for a Class of Shape Optimization Problems. Arch. Ration. Mech. Anal. 122 (1993) 183-195.  Zbl0811.49028
  6. M.G. Crandall and P.L. Lions, Viscosity Solutions of Hamilton-Jacobi Equations. Trans. Amer. Math. Soc.277 (1983) 1-43.  Zbl0599.35024
  7. G. Faber, Beweis, dass unter allen homogenen Membranen von gleicher Fläche und gleicher Spannung die kreisförmige den tiefsten Grundton gibt. Sitz. Ber. Bayer. Akad. Wiss. (1923) 169-172.  Zbl49.0342.03
  8. S. Finzi Vita, Constrained shape optimization for Dirichlets problems: discretization via relaxation. Adv. Math. Sci. Appl. 9 (1999) 581-596.  Zbl0962.49023
  9. H. Hamda, F. Jouve, E. Lutton, M. Schoenauer and M. Sebag, Représentations non structurées en optimisation topologique de formes par algorithmes évolutionnaires. Actes du 32e Congrès d'Analyse Numérique, Canum. ESAIM Proc. 8 (2000).  
  10. A. Henrot, Minimization problems for eigenvalues of the Laplacian. J. Evol. Eq.3 (2003) 443-461.  Zbl1049.49029
  11. A. Henrot and E. Oudet, Le stade ne minimise pas λ 2 parmi les ouverts convexes du plan. C. R. Acad. Sci. Paris Sér. I Math.332 (2001) 417-422.  
  12. A. Henrot and E. Oudet, Minimizing the second eigenvalue of the Laplace operator with Dirichlet boundary conditions. Arch. Ration. Mech. Anal.169 (2003) 73-87.  Zbl1055.35080
  13. A. Henrot and M. Pierre, Optimisation de forme (in preparation).  
  14. E. Krahn, Über eine von Rayleigh formulierte Minimaleigenshaft des Kreises. Math. Ann. 94 (1925) 97-100.  Zbl51.0356.05
  15. E. Krahn, Über Minimaleigenshaften der Kugel in drei und mehr Dimensionen. Acta Comm. Univ. Dorpat. A9 (1926) 1-44.  Zbl52.0510.03
  16. S. Osher and F. Santosa, Level set methods for optimization problems involving geometry and constraints: frequencies of a two-density inhomogeneous drum. J. Comput. Phys.171 (2001) 272-288.  Zbl1056.74061
  17. S. Osher and J.A. Sethian, Front propagation with curvature-dependant speed: Algorithms based on Hamilton-Jacobi formulations J. Comput. Phys. 79 (1988) 12-49.  Zbl0659.65132
  18. E. Oudet, Quelques résultats en optimisation de forme et stabilisation. Prépublication de l'Institut de recherche mathématique avancée, Strasbourg (2002).  
  19. M. Pierre and J.M. Roche, Numerical simulation of tridimensional electromagnetic shaping of liquid metals. Numer. Math.65 (1993) 203-217.  Zbl0792.65096
  20. G. Pólya and G. Szegö, Isoperimetric Inequalities in Mathematical Physics. Ann. Math. Stud. 27 (1952).  Zbl0044.38301
  21. J.A. Sethian, Level Set Methods and Fast Marching Methods. Cambridge University Press (1999).  Zbl0929.65066
  22. J. Sokolowski and J.P. Zolesio, Introduction to shape optimization: shape sensitivity analysis. Springer, Berlin, Springer Ser. Comput. Math.10 (1992).  Zbl0761.73003
  23. B.A. Troesch, Elliptical membranes with smallest second eigenvalue. Math. Comp. 27 (1973) 767-772.  Zbl0271.35018
  24. S.A. Wolf and J.B. Keller, Range of the first two eigenvalues of the laplacian. Proc. Roy. Soc. Lond. A447 (1994) 397-412.  Zbl0816.35097

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.