Control of the surface of a fluid by a wavemaker
ESAIM: Control, Optimisation and Calculus of Variations (2010)
- Volume: 10, Issue: 3, page 346-380
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topRosier, Lionel. "Control of the surface of a fluid by a wavemaker." ESAIM: Control, Optimisation and Calculus of Variations 10.3 (2010): 346-380. <http://eudml.org/doc/90734>.
@article{Rosier2010,
abstract = {
The control of the surface of water in a long canal by
means of a wavemaker is investigated. The fluid motion is governed
by the Korteweg-de Vries equation in Lagrangian coordinates.
The null controllability of the elevation of the fluid surface
is obtained thanks to a Carleman estimate and some weighted inequalities.
The global uncontrollability is also established.
},
author = {Rosier, Lionel},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {Korteweg-de Vries equation; Lagrangian coordinates;
exact boundary controllability; Carleman estimate.; exact boundary controllability; Carleman estimate},
language = {eng},
month = {3},
number = {3},
pages = {346-380},
publisher = {EDP Sciences},
title = {Control of the surface of a fluid by a wavemaker},
url = {http://eudml.org/doc/90734},
volume = {10},
year = {2010},
}
TY - JOUR
AU - Rosier, Lionel
TI - Control of the surface of a fluid by a wavemaker
JO - ESAIM: Control, Optimisation and Calculus of Variations
DA - 2010/3//
PB - EDP Sciences
VL - 10
IS - 3
SP - 346
EP - 380
AB -
The control of the surface of water in a long canal by
means of a wavemaker is investigated. The fluid motion is governed
by the Korteweg-de Vries equation in Lagrangian coordinates.
The null controllability of the elevation of the fluid surface
is obtained thanks to a Carleman estimate and some weighted inequalities.
The global uncontrollability is also established.
LA - eng
KW - Korteweg-de Vries equation; Lagrangian coordinates;
exact boundary controllability; Carleman estimate.; exact boundary controllability; Carleman estimate
UR - http://eudml.org/doc/90734
ER -
References
top- S.N. Antontsev, A.V. Kazhikov and V.N. Monakhov, Boundary values problems in mechanics of nonhomogeneous fluids. North-Holland, Amsterdam (1990).
- P. Benilan and R. Gariepy, Strong solutions in L1 of degenerate parabolic equations. J. Differ. Equations119 (1995) 473-502.
- J.L. Bona, M. Chen and J.-C. Saut, Boussinesq Equations and Other Systems for Small-Amplitude Long Waves in Nonlinear Dispersive Media. I: Derivation and Linear Theory. J. Nonlinear Sci.12 (2002) 283-318.
- J.L. Bona, S. Sun and B.-Y. Zhang, A Non-homogeneous Boundary-Value Problem for the Korteweg-de Vries Equation Posed on a Finite Domain. Commun. Partial Differ. Equations28 (2003) 1391-1436.
- J.L. Bona and R. Winther, The Korteweg-de Vries equation, posed in a quarter-plane. SIAM J. Math. Anal.14 (1983) 1056-1106.
- J.-M. Coron, On the controllability of the 2-D incompressible perfect fluids. J. Math. Pures Appl.75 (1996) 155-188.
- J.-M. Coron, Local controllability of a 1-D tank containing a fluid modeled by the shallow water equations, A tribute to J.L. Lions. ESAIM: COCV8 (2002) 513-554.
- E. Crépeau, Exact boundary controllability of the Korteweg-de Vries equation around a non-trivial stationary solution. Int. J. Control74 (2001) 1096-1106.
- E. Fernández-Cara, Null controllability of the semilinear heat equation. ESAIM: COCV2 (1997) 87-103.
- A.V. Fursikov and O.Y. Imanuvilov, On controllability of certain systems simulating a fluid flow, in Flow Control, M.D. Gunzburger Ed., Springer-Verlag, New York, IMA Vol. Math. Appl.68 (1995) 149-184.
- T. Kato, On the Cauchy problem for the (generalized) Korteweg-de Vries equations. Stud. App. Math.8 (1983) 93-128.
- J.-L. Lions and E. Magenes, Problèmes aux limites non homogènes, Vol. 1. Dunod, Paris (1968).
- G. Mathieu-Girard, Étude et contrôle des équations de la théorie “Shallow water” en dimension un. Ph.D. thesis, Université Paul Sabatier, Toulouse III (1998).
- S. Micu, On the controllability of the linearized Benjamin-Bona-Mahony equation. SIAM J. Control Optim.39 (2001) 1677-1696.
- S. Micu and J.H. Ortega, On the controllability of a linear coupled system of Korteweg-de Vries equations. Mathematical and numerical aspects of wave propagation (Santiago de Compostela, 2000). Philadelphia, PA SIAM (2000) 1020-1024.
- S. Mottelet, Controllability and stabilization of a canal with wave generators. SIAM J. Control Optim.38 (2000) 711-735.
- S. Mottelet, Controllability and stabilization of liquid vibration in a container during transportation. (Preprint.)
- N. Petit and P. Rouchon, Dynamics and solutions to some control problems for water-tank systems. IEEE Trans. Automat. Control47 (2002) 594-609.
- L. Rosier, Exact boundary controllability for the Korteweg-de Vries equation on a bounded domain. ESAIM: COCV2 (1997) 33-55, URIhttp://www.edpsciences.org/cocv
- L. Rosier, Exact boundary controllability for the linear Korteweg-de Vries equation – a numerical study. ESAIM Proc.4 (1998) 255-267, URIhttp://www.edpsciences.org/proc
- L. Rosier, Exact boundary controllability for the linear Korteweg-de Vries equation on the half-line. SIAM J. Control Optim.39 (2000) 331-351.
- D.L. Russell and B.-Y. Zhang, Controllability and stabilizability of the third-order linear dispersion equation on a periodic domain. SIAM J. Control Optim.31 (1993) 659-673.
- D.L. Russell and B.-Y. Zhang, Exact controllability and stabilizability of the Korteweg-de Vries equation. Trans. Amer. Math. Soc.348 (1996) 3643-3672.
- J. Simon, Compact Sets in the Space . Ann. Mat. Pura Appl. (IV)CXLVI (1987) 65-96.
- G.B. Whitham, Linear and nonlinear waves. A Wiley-Interscience publication, Wiley, New York (1999) reprint of the 1974 original.
- E. Zeidler, Nonlinear functional analysis and its applications, Part 1. Springer-Verlag, New York (1986).
- B.-Y. Zhang, Exact boundary controllability of the Korteweg-de Vries equation. SIAM J. Control Optim.37 (1999) 543-565.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.