Carleman estimates for the non-stationary Lamé system and the application to an inverse problem
Oleg Yu. Imanuvilov; Masahiro Yamamoto
ESAIM: Control, Optimisation and Calculus of Variations (2010)
- Volume: 11, Issue: 1, page 1-56
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topImanuvilov, Oleg Yu., and Yamamoto, Masahiro. "Carleman estimates for the non-stationary Lamé system and the application to an inverse problem." ESAIM: Control, Optimisation and Calculus of Variations 11.1 (2010): 1-56. <http://eudml.org/doc/90755>.
@article{Imanuvilov2010,
abstract = {
In this paper, we establish Carleman estimates for the two
dimensional isotropic non-stationary Lamé system with the zero Dirichlet boundary
conditions. Using this estimate, we prove the uniqueness and the
stability in determining spatially varying density and two Lamé
coefficients by a single measurement of solution over (0,T) x ω, where T > 0 is a sufficiently large time interval and a subdomain
ω satisfies a non-trapping condition.
},
author = {Imanuvilov, Oleg Yu., Yamamoto, Masahiro},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {Carleman estimate; Lamé system; inverse problem.; uniqueness; stability; Lamé coefficients},
language = {eng},
month = {3},
number = {1},
pages = {1-56},
publisher = {EDP Sciences},
title = {Carleman estimates for the non-stationary Lamé system and the application to an inverse problem},
url = {http://eudml.org/doc/90755},
volume = {11},
year = {2010},
}
TY - JOUR
AU - Imanuvilov, Oleg Yu.
AU - Yamamoto, Masahiro
TI - Carleman estimates for the non-stationary Lamé system and the application to an inverse problem
JO - ESAIM: Control, Optimisation and Calculus of Variations
DA - 2010/3//
PB - EDP Sciences
VL - 11
IS - 1
SP - 1
EP - 56
AB -
In this paper, we establish Carleman estimates for the two
dimensional isotropic non-stationary Lamé system with the zero Dirichlet boundary
conditions. Using this estimate, we prove the uniqueness and the
stability in determining spatially varying density and two Lamé
coefficients by a single measurement of solution over (0,T) x ω, where T > 0 is a sufficiently large time interval and a subdomain
ω satisfies a non-trapping condition.
LA - eng
KW - Carleman estimate; Lamé system; inverse problem.; uniqueness; stability; Lamé coefficients
UR - http://eudml.org/doc/90755
ER -
References
top- C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary. SIAM J. Control Optim.30 (1992) 1024-1065.
- M. Bellassoued, Distribution of resonances and decay of the local energy for the elastic wave equations. Comm. Math. Phys. 215 (2000) 375-408.
- M. Bellassoued, Carleman estimates and decay rate of the local energy for the Neumann problem of elasticity. Progr. Nonlinear Differ. Equations Appl. 46 (2001) 15-36.
- M. Bellassoued, Unicité et contrôle pour le système de Lamé. ESAIM: COCV6 (2001) 561-592.
- L. Baudouin and J.-P. Puel, Uniqueness and stability in an inverse problem for the Schrödinger equation. Inverse Problems18 (2002) 1537-1554.
- A.L. Bukhgeim, Introduction to the Theory of Inverse Problems. VSP, Utrecht (2000).
- A.L. Bukhgeim, J. Cheng, V. Isakov and M. Yamamoto, Uniqueness in determining damping coefficients in hyperbolic equations, in Analytic Extension Formulas and their Applications, Kluwer, Dordrecht (2001) 27-46.
- A.L. Bukhgeim and M.V. Klibanov, Global uniqueness of a class of multidimensional inverse problems. Soviet Math. Dokl.24 (1981) 244-247.
- T. Carleman, Sur un problème d'unicité pour les systèmes d'équations aux derivées partielles à deux variables independantes. Ark. Mat. Astr. Fys.2B (1939) 1-9.
- B. Dehman and L.Robbiano, La propriété du prolongement unique pour un système elliptique. Le système de Lamé. J. Math. Pures Appl.72 (1993) 475-492.
- G. Duvaut and J.L. Lions, Inequalities in Mechanics and Physics. Springer-Verlag, Berlin (1976).
- Yu.V. Egorov, Linear Differential Equations of Principal Type. Consultants Bureau New York (1986).
- M. Eller, V. Isakov, G. Nakamura and D. Tataru, Uniqueness and stability in the Cauchy problem for Maxwell's and the elasticity system, in Nonlinear Partial Differential Equations, Vol. 14, Collège de France Seminar, Elsevier-Gauthier Villars. Ser. Appl. Math.31 (2002) 329-350.
- M.E. Gurtin, The Linear Theory of Elasticity, in Encyclopedia of Physics, Vol. VIa/2, Mechanics of Solids II, C. Truesdell Ed., Springer-Verlag, Berlin (1972).
- L. Hörmander, Linear Partial Differential Operators. Springer-Verlag, Berlin (1963).
- M. Ikehata, G. Nakamura and M. Yamamoto, Uniqueness in inverse problems for the isotropic Lamé system. J. Math. Sci. Univ. Tokyo5 (1998) 627-692.
- O. Imanuvilov, Controllability of parabolic equations. Mat. Sbornik6 (1995) 109-132.
- O. Imanuvilov, On Carleman estimates for hyperbolic equations. Asymptotic Analysis (2002) 32 185-220.
- O. Imanuvilov, V. Isakov and M. Yamamoto, An inverse problem for the dynamical Lamé system with two sets of boundary data. Commun. Pure Appl. Math.56 (2003) 1366-1382.
- O. Imanuvilov, V. Isakov and M. Yamamoto, New realization on the pseudoconvexity and its application to an inverse problem (preprint).
- O. Imanuvilov and M. Yamamoto, Lipschitz stability in inverse parabolic problems by the Carleman estimate. Inverse Problems14 (1998) 1229-1245.
- O. Imanuvilov and M. Yamamoto, Global Lipschitz stability in an inverse hyperbolic problem by interior observations. Inverse Problems17 (2001) 717-728.
- O. Imanuvilov and M. Yamamoto, Global uniqueness and stability in determining coefficients of wave equations. Commun. Partial Differ. Equations26 (2001) 1409-1425.
- O. Imanuvilov and M. Yamamoto, Determination of a coefficient in an acoustic equation with a single measurement. Inverse Problems19 (2003) 151-171.
- O. Imanuvilov and M. Yamamoto, Remarks on Carleman estimates and controllability for the Lamé system. Journées Équations aux Dérivées Partielles, Forges-les-Eaux, 3-7 juin 2002, GDR 2434 (CNRS) 1-19.
- O. Imanuvilov and M. Yamamoto, Carleman inequalities for parabolic equations in Sobolev spaces of negative order and exact controllability for semilinear parabolic equations. Publ. Res. Inst. Math. Sci.39 (2003) 227-274.
- O. Imanuvilov and M. Yamamoto, Carleman estimate for a stationary isotropic Lamé system and the applications. Appl. Anal. 83 (2004) 243-270.
- V. Isakov, A nonhyperbolic Cauchy problem for and its applications to elasticity theory. Comm. Pure Appl. Math.39 (1986) 747-767.
- V. Isakov, Inverse Source Problems. American Mathematical Society, Providence, Rhode Island (1990).
- V. Isakov, Inverse Problems for Partial Differential Equations. Springer-Verlag, Berlin (1998).
- V. Isakov and M. Yamamoto, Carleman estimate with the Neumann boundary condition and its applications to the observability inequality and inverse hyperbolic problems. Contem. Math.268 (2000) 191-225.
- M.A. Kazemi and M.V. Klibanov, Stability estimates for ill-posed Cauchy problems involving hyperbolic equations and inequalities. Appl. Anal.50 (1993) 93-102.
- A. Khaĭdarov, Carleman estimates and inverse problems for second order hyperbolic equations. Math. USSR Sbornik58 (1987) 267-277.
- A. Khaĭdarov, On stability estimates in multidimensional inverse problems for differential equations. Soviet Math. Dokl.38 (1989) 614-617.
- M.V. Klibanov, Inverse problems and Carleman estimates. Inverse Problems8 (1992) 575-596.
- H. Kumano-go, Pseudo-differential Operators. MIT Press, Cambrige (1981).
- I. Lasiecka and R. Triggiani, Control Theory for Partial Differential Equations: Continuous and Approximation Theories. Cambridge University Press, Cambridge (2000).
- J.L. Lions, Optimal Control of Systems Governed by Partial Differential Equations. Springer-Verlag, Berlin (1971).
- J.L. Lions, Contrôlabilité exacte perturbations et stabilisation de systèmes distribués. Masson, Paris (1988).
- J.-P. Puel and M. Yamamoto, On a global estimate in a linear inverse hyperbolic problem. Inverse Problems12 (1996) 995-1002.
- J.-P. Puel and M. Yamamoto, Generic well-posedness in a multidimensional hyperbolic inverse problem. J. Inverse Ill-posed Problems5 (1997) 55-83.
- L. Rachele, An inverse problem in elastodynamics: uniqueness of the wave speeds in the interior. J. Differ. Equations162 (2000) 300-325.
- A. Ruiz, Unique continuation for weak solutions of the wave equation plus a potential. J. Math. Pures. Appl.71 (1992) 455-467.
- D. Tataru, Carleman estimates and unique continuation for solutions to boundary value problems. J. Math. Pures. Appl.75 (1996) 367-408.
- D. Tataru, A priori estimates of Carleman's type in domains with boundary. J. Math. Pures. Appl.73 (1994) 355-387.
- M. Taylor, Pseudodifferential Operators. Princeton University Press, Princeton, New Jersey (1981).
- M. Taylor, Pseudodifferential Operators and Nonlinear PDE. Birkhäuser, Boston (1991).
- V.G. Yakhno, Inverse Problems for Differential Equations of Elasticity. Nauka, Novosibirsk (1990).
- K. Yamamoto, Singularities of solutions to the boundary value problems for elastic and Maxwell's equations. Japan J. Math.14 (1988) 119-163.
- M. Yamamoto, Uniqueness and stability in multidimensional hyperbolic inverse problems. J. Math. Pures Appl.78 (1999) 65-98.
- X. Zhang, Explicit observability inequalities for the wave equation with lower order terms by means of Carleman inequalities. SIAM J. Control Optim.39 (2001) 812-834.
- C. Zuily, Uniqueness and Non-uniqueness in the Cauchy Problem. Birkhäuser, Boston, Basel, Berlin, (1983).
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.