Remarks on Carleman estimates and exact controllability of the Lamé system

Oleg Yu. Imanuvilov; Masahiro Yamamoto

Journées équations aux dérivées partielles (2002)

  • Volume: 11, page 1-19
  • ISSN: 0752-0360

Abstract

top
In this paper we established the Carleman estimate for the two dimensional Lamé system with the zero Dirichlet boundary conditions. Using this estimate we proved the exact controllability result for the Lamé system with with a control locally distributed over a subdomain which satisfies to a certain type of nontrapping conditions.

How to cite

top

Imanuvilov, Oleg Yu., and Yamamoto, Masahiro. "Remarks on Carleman estimates and exact controllability of the Lamé system." Journées équations aux dérivées partielles 11 (2002): 1-19. <http://eudml.org/doc/93432>.

@article{Imanuvilov2002,
abstract = {In this paper we established the Carleman estimate for the two dimensional Lamé system with the zero Dirichlet boundary conditions. Using this estimate we proved the exact controllability result for the Lamé system with with a control locally distributed over a subdomain which satisfies to a certain type of nontrapping conditions.},
author = {Imanuvilov, Oleg Yu., Yamamoto, Masahiro},
journal = {Journées équations aux dérivées partielles},
keywords = {Carleman estimate; Lamé system; uniqueness; stability; Lamé coefficients},
language = {eng},
pages = {1-19},
publisher = {Université de Nantes},
title = {Remarks on Carleman estimates and exact controllability of the Lamé system},
url = {http://eudml.org/doc/93432},
volume = {11},
year = {2002},
}

TY - JOUR
AU - Imanuvilov, Oleg Yu.
AU - Yamamoto, Masahiro
TI - Remarks on Carleman estimates and exact controllability of the Lamé system
JO - Journées équations aux dérivées partielles
PY - 2002
PB - Université de Nantes
VL - 11
SP - 1
EP - 19
AB - In this paper we established the Carleman estimate for the two dimensional Lamé system with the zero Dirichlet boundary conditions. Using this estimate we proved the exact controllability result for the Lamé system with with a control locally distributed over a subdomain which satisfies to a certain type of nontrapping conditions.
LA - eng
KW - Carleman estimate; Lamé system; uniqueness; stability; Lamé coefficients
UR - http://eudml.org/doc/93432
ER -

References

top
  1. [AK1] F. Alabau, V. Komornik. Boundary observability and controllability of linear elastodynamic systems, Optimization methods in partial differential equations, AMS, Providence (1997). V-17 Zbl0889.35060
  2. [AK2] F. Alabau, V. Komornik. Boundary observability, controllability and stabilization of linear elastodynamic systems, SIAM J. Control Optimization 37, 521-542. Zbl0935.93037MR1665070
  3. [AITY] D. Ang, M. Ikehata, D. Trong and M. Yamamoto. Unique continuation for a stationary isotropic Lamé system, Com. P.D.E 21, 371-385 (1998). Zbl0892.35054MR1608540
  4. [B1] M. Bellassoued. Distribution of resonances and decay of the local energy for the elastic wave equations, Comm. Math. Phys. 215, 375-408 (2000). Zbl0978.35077MR1799852
  5. [B2] M. Bellassoued. Carleman estimates and Decay Rate of the local energy for the Neumann problem of elasticity, Progr. Nonlinear Differential Equations Appl. 46,15-36 (2001). Zbl0983.35031MR1839164
  6. [B3] M. Bellassoued. Unicité et contrôlle pour le système de Lamé, ESIAM 6, 561-592 (2001). Zbl1007.35006MR1872389
  7. [DR] B. Dehman and L. Robbiano. La propriété du prolongement unique pour un systeme elliptique le système de Lamé, J. Math. Pure Appl. 72, 475-492 (1993). Zbl0832.73012MR1239100
  8. [E1] Y. Egorov. Linear differential equations of the principal type, Consultants Bureau, New York (1986). Zbl0669.35001MR872855
  9. [E2] Y. Egorov. The uniqueness of the solutions of the Cauchy Problem, Dokl. Akad. Nauk. SSSR 264 (4), 812-814 (1982). Zbl0509.35002MR659579
  10. [EINT] M. Eller, V. Isakov, G. Nakamura and D. Tataru. Uniqueness and stability in the Cauchy problem for Maxwell's and the elasticity system, Nonlinear Partial Differential Equations, Vol. 16, Collège de France Seminar, ElsevierGauthier Villars "Series in Applied Mathematics", Ed. P.G. Ciarlet, P.L. Lions 7, (2002). Zbl1038.35159MR1936000
  11. [Hö] L. Hörmander L.Partial Differential Operators, Springer-Verlag, Berlin (1963). Zbl0108.09301
  12. [H] M.A. Horn. Implications of sharp regularity results on boundary stabilization of the system of linear elastisity, J. Math. Analysis and Applications 223, 126-150 (1998). Zbl0913.93062MR1627344
  13. [Im] O. Imanuvilov. On Carleman estimates for hyperbolic equations, to appear in Asymptotic Analysis. Zbl1050.35046MR1993649
  14. [IIY] O. Imanuvilov, V. Isakov, M. Yamamoto. An inverse problem for the dynamical Lamé system with two sets of boundary data, Preprint (2002). MR1980857
  15. [La] J. Lagnese. Boundary stabilization of Thin Plates, SIAM studies in Applied Mathematics (1989). Zbl0696.73034MR1061153
  16. [LL] J. Lagnese and J.L. Lions. Modeling, Analysis and Control of the thin plates, Masson, Paris (1988). V-18 Zbl0662.73039MR953313
  17. [Li] J.L. Lions. Contrôlabilité exacte, perturbation et stabilization de systèmes distribués, Vol 1, Masson, Paris, 1988. Zbl0653.93002
  18. [NW] G. Nakamura, J.-N. Wang. Unique continuation and the Runge approximation property for anisotropic elasticity, Preprint. 
  19. [T1] M. Taylor. Pseudodifferential operators, Princeton University Press, Princeton, New Jersey (1981). Zbl0453.47026MR618463
  20. [T2] M. Taylor. Pseudodifferential Operators and Nonlinear PDE, Birkhäuser, Boston Basel Berlin (1991). Zbl0746.35062MR1121019
  21. [Y1] K. Yamamoto. Singularities of solutions to the boundary value problems for elastic and Maxwell's equation, Japan J. Math. 14 (1),119-163 (1988). Zbl0669.73017MR945621
  22. [Y2] K. Yamamoto. Exponential energy decay of solutions of elastic wave equations with the Dirichlet condition, Math. Scand. 65, 2006-220 (1989). Zbl0757.73013MR1050865
  23. [Zui] C. Zuily. Uniqueness and non-uniqueness in Cauchy problem, Birkhäuser, Boston Basel Berlin (1983). Zbl0521.35003MR701544
  24. [W1] N. Weck. Aussenraumaufgaben in der Theorie stationärer Schwingungen inhomogener elastischer Körper, Math. Z. 111, 387-398 (1969). Zbl0176.09202MR263295
  25. [W2] N. Weck. Unique continuation for systems with Lamé principal part, Math. Meth. Appl. Sci. 24, 595-605 (2001) Zbl0986.35117MR1834916

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.