Remarks on Carleman estimates and exact controllability of the Lamé system
Oleg Yu. Imanuvilov; Masahiro Yamamoto
Journées équations aux dérivées partielles (2002)
- Volume: 11, page 1-19
- ISSN: 0752-0360
Access Full Article
topAbstract
topHow to cite
topImanuvilov, Oleg Yu., and Yamamoto, Masahiro. "Remarks on Carleman estimates and exact controllability of the Lamé system." Journées équations aux dérivées partielles 11 (2002): 1-19. <http://eudml.org/doc/93432>.
@article{Imanuvilov2002,
abstract = {In this paper we established the Carleman estimate for the two dimensional Lamé system with the zero Dirichlet boundary conditions. Using this estimate we proved the exact controllability result for the Lamé system with with a control locally distributed over a subdomain which satisfies to a certain type of nontrapping conditions.},
author = {Imanuvilov, Oleg Yu., Yamamoto, Masahiro},
journal = {Journées équations aux dérivées partielles},
keywords = {Carleman estimate; Lamé system; uniqueness; stability; Lamé coefficients},
language = {eng},
pages = {1-19},
publisher = {Université de Nantes},
title = {Remarks on Carleman estimates and exact controllability of the Lamé system},
url = {http://eudml.org/doc/93432},
volume = {11},
year = {2002},
}
TY - JOUR
AU - Imanuvilov, Oleg Yu.
AU - Yamamoto, Masahiro
TI - Remarks on Carleman estimates and exact controllability of the Lamé system
JO - Journées équations aux dérivées partielles
PY - 2002
PB - Université de Nantes
VL - 11
SP - 1
EP - 19
AB - In this paper we established the Carleman estimate for the two dimensional Lamé system with the zero Dirichlet boundary conditions. Using this estimate we proved the exact controllability result for the Lamé system with with a control locally distributed over a subdomain which satisfies to a certain type of nontrapping conditions.
LA - eng
KW - Carleman estimate; Lamé system; uniqueness; stability; Lamé coefficients
UR - http://eudml.org/doc/93432
ER -
References
top- [AK1] F. Alabau, V. Komornik. Boundary observability and controllability of linear elastodynamic systems, Optimization methods in partial differential equations, AMS, Providence (1997). V-17 Zbl0889.35060
- [AK2] F. Alabau, V. Komornik. Boundary observability, controllability and stabilization of linear elastodynamic systems, SIAM J. Control Optimization 37, 521-542. Zbl0935.93037MR1665070
- [AITY] D. Ang, M. Ikehata, D. Trong and M. Yamamoto. Unique continuation for a stationary isotropic Lamé system, Com. P.D.E 21, 371-385 (1998). Zbl0892.35054MR1608540
- [B1] M. Bellassoued. Distribution of resonances and decay of the local energy for the elastic wave equations, Comm. Math. Phys. 215, 375-408 (2000). Zbl0978.35077MR1799852
- [B2] M. Bellassoued. Carleman estimates and Decay Rate of the local energy for the Neumann problem of elasticity, Progr. Nonlinear Differential Equations Appl. 46,15-36 (2001). Zbl0983.35031MR1839164
- [B3] M. Bellassoued. Unicité et contrôlle pour le système de Lamé, ESIAM 6, 561-592 (2001). Zbl1007.35006MR1872389
- [DR] B. Dehman and L. Robbiano. La propriété du prolongement unique pour un systeme elliptique le système de Lamé, J. Math. Pure Appl. 72, 475-492 (1993). Zbl0832.73012MR1239100
- [E1] Y. Egorov. Linear differential equations of the principal type, Consultants Bureau, New York (1986). Zbl0669.35001MR872855
- [E2] Y. Egorov. The uniqueness of the solutions of the Cauchy Problem, Dokl. Akad. Nauk. SSSR 264 (4), 812-814 (1982). Zbl0509.35002MR659579
- [EINT] M. Eller, V. Isakov, G. Nakamura and D. Tataru. Uniqueness and stability in the Cauchy problem for Maxwell's and the elasticity system, Nonlinear Partial Differential Equations, Vol. 16, Collège de France Seminar, ElsevierGauthier Villars "Series in Applied Mathematics", Ed. P.G. Ciarlet, P.L. Lions 7, (2002). Zbl1038.35159MR1936000
- [Hö] L. Hörmander L.Partial Differential Operators, Springer-Verlag, Berlin (1963). Zbl0108.09301
- [H] M.A. Horn. Implications of sharp regularity results on boundary stabilization of the system of linear elastisity, J. Math. Analysis and Applications 223, 126-150 (1998). Zbl0913.93062MR1627344
- [Im] O. Imanuvilov. On Carleman estimates for hyperbolic equations, to appear in Asymptotic Analysis. Zbl1050.35046MR1993649
- [IIY] O. Imanuvilov, V. Isakov, M. Yamamoto. An inverse problem for the dynamical Lamé system with two sets of boundary data, Preprint (2002). MR1980857
- [La] J. Lagnese. Boundary stabilization of Thin Plates, SIAM studies in Applied Mathematics (1989). Zbl0696.73034MR1061153
- [LL] J. Lagnese and J.L. Lions. Modeling, Analysis and Control of the thin plates, Masson, Paris (1988). V-18 Zbl0662.73039MR953313
- [Li] J.L. Lions. Contrôlabilité exacte, perturbation et stabilization de systèmes distribués, Vol 1, Masson, Paris, 1988. Zbl0653.93002
- [NW] G. Nakamura, J.-N. Wang. Unique continuation and the Runge approximation property for anisotropic elasticity, Preprint.
- [T1] M. Taylor. Pseudodifferential operators, Princeton University Press, Princeton, New Jersey (1981). Zbl0453.47026MR618463
- [T2] M. Taylor. Pseudodifferential Operators and Nonlinear PDE, Birkhäuser, Boston Basel Berlin (1991). Zbl0746.35062MR1121019
- [Y1] K. Yamamoto. Singularities of solutions to the boundary value problems for elastic and Maxwell's equation, Japan J. Math. 14 (1),119-163 (1988). Zbl0669.73017MR945621
- [Y2] K. Yamamoto. Exponential energy decay of solutions of elastic wave equations with the Dirichlet condition, Math. Scand. 65, 2006-220 (1989). Zbl0757.73013MR1050865
- [Zui] C. Zuily. Uniqueness and non-uniqueness in Cauchy problem, Birkhäuser, Boston Basel Berlin (1983). Zbl0521.35003MR701544
- [W1] N. Weck. Aussenraumaufgaben in der Theorie stationärer Schwingungen inhomogener elastischer Körper, Math. Z. 111, 387-398 (1969). Zbl0176.09202MR263295
- [W2] N. Weck. Unique continuation for systems with Lamé principal part, Math. Meth. Appl. Sci. 24, 595-605 (2001) Zbl0986.35117MR1834916
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.