Curl bounds Grad on SO(3)

Patrizio Neff; Ingo Münch

ESAIM: Control, Optimisation and Calculus of Variations (2010)

  • Volume: 14, Issue: 1, page 148-159
  • ISSN: 1292-8119

Abstract

top
Let F p GL ( 3 ) be the plastic deformation from the multiplicative decomposition in elasto-plasticity. We show that the geometric dislocation density tensor of Gurtin in the form Curl [ F p ] · ( F p ) T applied to rotations controls the gradient in the sense that pointwise R C 1 ( 3 , SO ( 3 ) ) : Curl [ R ] · R T 𝕄 3 × 3 2 1 2 D R 27 2 . This result complements rigidity results [Friesecke, James and Müller, Comme Pure Appl. Math.55 (2002) 1461–1506; John, Comme Pure Appl. Math.14 (1961) 391–413; Reshetnyak, Siberian Math. J.8 (1967) 631–653)] as well as an associated linearized theorem saying that A C 1 ( 3 , 𝔰𝔬 ( 3 ) ) : Curl [ A ] 𝕄 3 × 3 2 1 2 D A 27 2 = axl [ A ] 9 2 .

How to cite

top

Neff, Patrizio, and Münch, Ingo. "Curl bounds Grad on SO(3)." ESAIM: Control, Optimisation and Calculus of Variations 14.1 (2010): 148-159. <http://eudml.org/doc/90861>.

@article{Neff2010,
abstract = { Let $F^\{\rm p\} \in \{\rm GL\}(3)$ be the plastic deformation from the multiplicative decomposition in elasto-plasticity. We show that the geometric dislocation density tensor of Gurtin in the form $\{\rm Curl\}[\{F^\{\rm p\}\}]\cdot (F^\{\rm p\})^T$ applied to rotations controls the gradient in the sense that pointwise $ \forall R \in C^1(\mathbb\{R\}^3, \{\rm SO\}(3)): \Arrowvert \{\rm Curl\}[R] \cdot R^T \Arrowvert_\{\mathbb\{M\}^\{3\times3\}\}^2 \ge \frac\{1\}\{2\} \Arrowvert\{\rm D\}R\Arrowvert_\{\mathbb\{R\}^\{27\}\}^2$. This result complements rigidity results [Friesecke, James and Müller, Comme Pure Appl. Math.55 (2002) 1461–1506; John, Comme Pure Appl. Math.14 (1961) 391–413; Reshetnyak, Siberian Math. J.8 (1967) 631–653)] as well as an associated linearized theorem saying that $ \forall A \in C^1(\mathbb\{R\}^3, \mathfrak\{so\}(3)): \Arrowvert \{\rm Curl\}[A]\Arrowvert_\{\mathbb\{M\}^\{3\times3\}\}^2 \ge \frac\{1\}\{2\} \Arrowvert\{\rm D\}A\Arrowvert_\{\mathbb\{R\}^\{27\}\}^2 = \Arrowvert\nabla\{\rm axl\}[A]\Arrowvert_\{\mathbb\{R\}^9\}^2$. },
author = {Neff, Patrizio, Münch, Ingo},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {Rotations; polar-materials; microstructure; dislocation density; rigidity; differential geometry; structured continua; multiplicative decomposition; elasto-plasticity; geometric dislocation density tensor},
language = {eng},
month = {3},
number = {1},
pages = {148-159},
publisher = {EDP Sciences},
title = {Curl bounds Grad on SO(3)},
url = {http://eudml.org/doc/90861},
volume = {14},
year = {2010},
}

TY - JOUR
AU - Neff, Patrizio
AU - Münch, Ingo
TI - Curl bounds Grad on SO(3)
JO - ESAIM: Control, Optimisation and Calculus of Variations
DA - 2010/3//
PB - EDP Sciences
VL - 14
IS - 1
SP - 148
EP - 159
AB - Let $F^{\rm p} \in {\rm GL}(3)$ be the plastic deformation from the multiplicative decomposition in elasto-plasticity. We show that the geometric dislocation density tensor of Gurtin in the form ${\rm Curl}[{F^{\rm p}}]\cdot (F^{\rm p})^T$ applied to rotations controls the gradient in the sense that pointwise $ \forall R \in C^1(\mathbb{R}^3, {\rm SO}(3)): \Arrowvert {\rm Curl}[R] \cdot R^T \Arrowvert_{\mathbb{M}^{3\times3}}^2 \ge \frac{1}{2} \Arrowvert{\rm D}R\Arrowvert_{\mathbb{R}^{27}}^2$. This result complements rigidity results [Friesecke, James and Müller, Comme Pure Appl. Math.55 (2002) 1461–1506; John, Comme Pure Appl. Math.14 (1961) 391–413; Reshetnyak, Siberian Math. J.8 (1967) 631–653)] as well as an associated linearized theorem saying that $ \forall A \in C^1(\mathbb{R}^3, \mathfrak{so}(3)): \Arrowvert {\rm Curl}[A]\Arrowvert_{\mathbb{M}^{3\times3}}^2 \ge \frac{1}{2} \Arrowvert{\rm D}A\Arrowvert_{\mathbb{R}^{27}}^2 = \Arrowvert\nabla{\rm axl}[A]\Arrowvert_{\mathbb{R}^9}^2$.
LA - eng
KW - Rotations; polar-materials; microstructure; dislocation density; rigidity; differential geometry; structured continua; multiplicative decomposition; elasto-plasticity; geometric dislocation density tensor
UR - http://eudml.org/doc/90861
ER -

References

top
  1. S. Aubry and M. Ortiz, The mechanics of deformation-induced subgrain-dislocation structures in metallic crystals at large strains. Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci.459 (2003) 3131–3158.  
  2. B.A. Bilby, R. Bullough and E. Smith, Continuous distributions of dislocations: a new application of the methods of non-riemannian geometry. Proc. Roy. Soc. London, Ser. A231 (1955) 263–273.  
  3. E. Cartan, Leçons sur la géometrie des espaces de Riemann. Gauthier-Villars, Paris (1928).  
  4. P. Cermelli and M.E. Gurtin, On the characterization of geometrically necessary dislocations in finite plasticity. J. Mech. Phys. Solids49 (2001) 1539–1568.  
  5. S. Conti and M. Ortiz, Dislocation microstructures and the effective behavior of single crystals. Arch. Rat. Mech. Anal.176 (2005) 103–147.  
  6. A. Einstein, Relativity: The Special and General Theory. Crown, New-York (1961).  
  7. J.D. Eshelby, The continuum theory of lattice defects, volume III of Solid state Physics. Academic Press, New-York (1956).  
  8. G. Friesecke, R.D. James and S. Müller, A theorem on geometric rigidity and the derivation of nonlinear plate theory from three-dimensional elasticity. Comm. Pure Appl. Math.55 (2002) 1461–1506.  
  9. M.E. Gurtin, An Introduction to Continuum Mechanics, Mathematics in Science and Engineering158. Academic Press, London, 1st edn. (1981).  
  10. M.E. Gurtin, On the plasticity of single crystals: free energy, microforces, plastic-strain gradients. J. Mech. Phys. Solids48 (2000) 989–1036.  
  11. J.P. Hirth and J. Lothe, Theory of Dislocations. McGraw-Hill, New-York (1968).  
  12. F. John, Rotation and strain. Comm. Pure Appl. Math.14 (1961) 391–413.  
  13. J. Jost, Riemannian Geometry. Springer-Verlag (2002).  
  14. K. Kondo, Geometry of elastic deformation and incompatibility, in Memoirs of the Unifying Study of the Basic Problems in Engineering Science by Means of Geometry, volume 1, Division C, K. Kondo Ed., Gakujutsu Bunken Fukyo-Kai (1955) 361–373.  
  15. E. Kröner, Der fundamentale Zusammenhang zwischen Versetzungsdichte und Spannungsfunktion. Z. Phys.142 (1955) 463–475.  
  16. E. Kröner, Kontinuumstheorie der Versetzungen und Eigenspannungen, Ergebnisse der Angewandten Mathematik5. Springer, Berlin (1958).  
  17. E. Kröner, Allgemeine Kontinuumstheorie der Versetzungen und Eigenspannungen. Arch. Rat. Mech. Anal.4 (1960) 273–334.  
  18. E. Kröner and A. Seeger, Nichtlineare Elastizitätstheorie der Versetzungen und Eigenspannungen. Arch. Rat. Mech. Anal.3 (1959) 97–119.  
  19. D. Kuhlmann-Wilsdorf, Theory of plastic deformation: properties of low energy dislocation structures. Mat. Sci. Eng.A113 (1989) 1.  
  20. E.H. Lee, Elastic-plastic deformation at finite strain. J. Appl. Mech.36 (1969) 1–6.  
  21. A. Mielke and S. Müller, Lower semi-continuity and existence of minimizers in incremental finite-strain elastoplasticity. ZAMM86 (2006) 233–250.  
  22. T. Mura, Micromechanics of defects in solids. Kluwer Academic Publishers, Boston (1987).  
  23. F.R.N. Nabarro, Theory of crystal dislocations. Oxford University Press, Oxford (1967).  
  24. J. Necas and I. Hlavacek, Mathematical theory of elastic and elastico-plastic bodies: An introduction. Elsevier, Amsterdam (1981).  
  25. P. Neff, On Korn's first inequality with nonconstant coefficients. Proc. Roy. Soc. Edinb. A132 (2002) 221–243.  
  26. J.F. Nye, Some geometrical relations in dislocated crystals. Acta Metall.1 (1953) 153–162.  
  27. M. Ortiz and E.A. Repetto, Nonconvex energy minimization and dislocation structures in ductile single crystals. J. Mech. Phys. Solids47 (1999) 397–462.  
  28. M. Ortiz, E.A. Repetto and L. Stainier, A theory of subgrain dislocation structures. J. Mech. Phys. Solids48 (2000) 2077–2114.  
  29. G.P. Parry and M. Silhavy, Elastic scalar invariants in the theory of defective crystals. R. Soc. Lond. Proc., Ser. A, Math. Phys. Eng. Sci.455 (1999) 4333–4346.  
  30. Yu.G. Reshetnyak, Liouville's theorem on conformal mappings for minimal regularity assumptions. Siberian Math. J.8 (1967) 631–653.  
  31. B. Svendsen, Continuum thermodynamic models for crystal plasticity including the effects of geometrically necessary dislocations. J. Mech. Phys. Solids50 (2002) 1297–1329.  
  32. R.M. Wald, General Relativity. University of Chicago Press, Chicago (1984).  

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.