Curl bounds Grad on SO(3)

Patrizio Neff; Ingo Münch

ESAIM: Control, Optimisation and Calculus of Variations (2010)

  • Volume: 14, Issue: 1, page 148-159
  • ISSN: 1292-8119

Abstract

top
Let F p GL ( 3 ) be the plastic deformation from the multiplicative decomposition in elasto-plasticity. We show that the geometric dislocation density tensor of Gurtin in the form Curl [ F p ] · ( F p ) T applied to rotations controls the gradient in the sense that pointwise R C 1 ( 3 , SO ( 3 ) ) : Curl [ R ] · R T 𝕄 3 × 3 2 1 2 D R 27 2 . This result complements rigidity results [Friesecke, James and Müller, Comme Pure Appl. Math.55 (2002) 1461–1506; John, Comme Pure Appl. Math.14 (1961) 391–413; Reshetnyak, Siberian Math. J.8 (1967) 631–653)] as well as an associated linearized theorem saying that A C 1 ( 3 , 𝔰𝔬 ( 3 ) ) : Curl [ A ] 𝕄 3 × 3 2 1 2 D A 27 2 = axl [ A ] 9 2 .

How to cite

top

Neff, Patrizio, and Münch, Ingo. "Curl bounds Grad on SO(3)." ESAIM: Control, Optimisation and Calculus of Variations 14.1 (2010): 148-159. <http://eudml.org/doc/90861>.

@article{Neff2010,
abstract = { Let $F^\{\rm p\} \in \{\rm GL\}(3)$ be the plastic deformation from the multiplicative decomposition in elasto-plasticity. We show that the geometric dislocation density tensor of Gurtin in the form $\{\rm Curl\}[\{F^\{\rm p\}\}]\cdot (F^\{\rm p\})^T$ applied to rotations controls the gradient in the sense that pointwise $ \forall R \in C^1(\mathbb\{R\}^3, \{\rm SO\}(3)): \Arrowvert \{\rm Curl\}[R] \cdot R^T \Arrowvert_\{\mathbb\{M\}^\{3\times3\}\}^2 \ge \frac\{1\}\{2\} \Arrowvert\{\rm D\}R\Arrowvert_\{\mathbb\{R\}^\{27\}\}^2$. This result complements rigidity results [Friesecke, James and Müller, Comme Pure Appl. Math.55 (2002) 1461–1506; John, Comme Pure Appl. Math.14 (1961) 391–413; Reshetnyak, Siberian Math. J.8 (1967) 631–653)] as well as an associated linearized theorem saying that $ \forall A \in C^1(\mathbb\{R\}^3, \mathfrak\{so\}(3)): \Arrowvert \{\rm Curl\}[A]\Arrowvert_\{\mathbb\{M\}^\{3\times3\}\}^2 \ge \frac\{1\}\{2\} \Arrowvert\{\rm D\}A\Arrowvert_\{\mathbb\{R\}^\{27\}\}^2 = \Arrowvert\nabla\{\rm axl\}[A]\Arrowvert_\{\mathbb\{R\}^9\}^2$. },
author = {Neff, Patrizio, Münch, Ingo},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {Rotations; polar-materials; microstructure; dislocation density; rigidity; differential geometry; structured continua; multiplicative decomposition; elasto-plasticity; geometric dislocation density tensor},
language = {eng},
month = {3},
number = {1},
pages = {148-159},
publisher = {EDP Sciences},
title = {Curl bounds Grad on SO(3)},
url = {http://eudml.org/doc/90861},
volume = {14},
year = {2010},
}

TY - JOUR
AU - Neff, Patrizio
AU - Münch, Ingo
TI - Curl bounds Grad on SO(3)
JO - ESAIM: Control, Optimisation and Calculus of Variations
DA - 2010/3//
PB - EDP Sciences
VL - 14
IS - 1
SP - 148
EP - 159
AB - Let $F^{\rm p} \in {\rm GL}(3)$ be the plastic deformation from the multiplicative decomposition in elasto-plasticity. We show that the geometric dislocation density tensor of Gurtin in the form ${\rm Curl}[{F^{\rm p}}]\cdot (F^{\rm p})^T$ applied to rotations controls the gradient in the sense that pointwise $ \forall R \in C^1(\mathbb{R}^3, {\rm SO}(3)): \Arrowvert {\rm Curl}[R] \cdot R^T \Arrowvert_{\mathbb{M}^{3\times3}}^2 \ge \frac{1}{2} \Arrowvert{\rm D}R\Arrowvert_{\mathbb{R}^{27}}^2$. This result complements rigidity results [Friesecke, James and Müller, Comme Pure Appl. Math.55 (2002) 1461–1506; John, Comme Pure Appl. Math.14 (1961) 391–413; Reshetnyak, Siberian Math. J.8 (1967) 631–653)] as well as an associated linearized theorem saying that $ \forall A \in C^1(\mathbb{R}^3, \mathfrak{so}(3)): \Arrowvert {\rm Curl}[A]\Arrowvert_{\mathbb{M}^{3\times3}}^2 \ge \frac{1}{2} \Arrowvert{\rm D}A\Arrowvert_{\mathbb{R}^{27}}^2 = \Arrowvert\nabla{\rm axl}[A]\Arrowvert_{\mathbb{R}^9}^2$.
LA - eng
KW - Rotations; polar-materials; microstructure; dislocation density; rigidity; differential geometry; structured continua; multiplicative decomposition; elasto-plasticity; geometric dislocation density tensor
UR - http://eudml.org/doc/90861
ER -

References

top
  1. S. Aubry and M. Ortiz, The mechanics of deformation-induced subgrain-dislocation structures in metallic crystals at large strains. Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci.459 (2003) 3131–3158.  Zbl1041.74506
  2. B.A. Bilby, R. Bullough and E. Smith, Continuous distributions of dislocations: a new application of the methods of non-riemannian geometry. Proc. Roy. Soc. London, Ser. A231 (1955) 263–273.  
  3. E. Cartan, Leçons sur la géometrie des espaces de Riemann. Gauthier-Villars, Paris (1928).  Zbl54.0755.01
  4. P. Cermelli and M.E. Gurtin, On the characterization of geometrically necessary dislocations in finite plasticity. J. Mech. Phys. Solids49 (2001) 1539–1568.  Zbl0989.74013
  5. S. Conti and M. Ortiz, Dislocation microstructures and the effective behavior of single crystals. Arch. Rat. Mech. Anal.176 (2005) 103–147.  Zbl1064.74144
  6. A. Einstein, Relativity: The Special and General Theory. Crown, New-York (1961).  Zbl0029.18303
  7. J.D. Eshelby, The continuum theory of lattice defects, volume III of Solid state Physics. Academic Press, New-York (1956).  
  8. G. Friesecke, R.D. James and S. Müller, A theorem on geometric rigidity and the derivation of nonlinear plate theory from three-dimensional elasticity. Comm. Pure Appl. Math.55 (2002) 1461–1506.  Zbl1021.74024
  9. M.E. Gurtin, An Introduction to Continuum Mechanics, Mathematics in Science and Engineering158. Academic Press, London, 1st edn. (1981).  Zbl0559.73001
  10. M.E. Gurtin, On the plasticity of single crystals: free energy, microforces, plastic-strain gradients. J. Mech. Phys. Solids48 (2000) 989–1036.  Zbl0988.74021
  11. J.P. Hirth and J. Lothe, Theory of Dislocations. McGraw-Hill, New-York (1968).  
  12. F. John, Rotation and strain. Comm. Pure Appl. Math.14 (1961) 391–413.  Zbl0102.17404
  13. J. Jost, Riemannian Geometry. Springer-Verlag (2002).  
  14. K. Kondo, Geometry of elastic deformation and incompatibility, in Memoirs of the Unifying Study of the Basic Problems in Engineering Science by Means of Geometry, volume 1, Division C, K. Kondo Ed., Gakujutsu Bunken Fukyo-Kai (1955) 361–373.  
  15. E. Kröner, Der fundamentale Zusammenhang zwischen Versetzungsdichte und Spannungsfunktion. Z. Phys.142 (1955) 463–475.  Zbl0068.40803
  16. E. Kröner, Kontinuumstheorie der Versetzungen und Eigenspannungen, Ergebnisse der Angewandten Mathematik5. Springer, Berlin (1958).  
  17. E. Kröner, Allgemeine Kontinuumstheorie der Versetzungen und Eigenspannungen. Arch. Rat. Mech. Anal.4 (1960) 273–334.  Zbl0090.17601
  18. E. Kröner and A. Seeger, Nichtlineare Elastizitätstheorie der Versetzungen und Eigenspannungen. Arch. Rat. Mech. Anal.3 (1959) 97–119.  Zbl0085.38601
  19. D. Kuhlmann-Wilsdorf, Theory of plastic deformation: properties of low energy dislocation structures. Mat. Sci. Eng.A113 (1989) 1.  
  20. E.H. Lee, Elastic-plastic deformation at finite strain. J. Appl. Mech.36 (1969) 1–6.  Zbl0179.55603
  21. A. Mielke and S. Müller, Lower semi-continuity and existence of minimizers in incremental finite-strain elastoplasticity. ZAMM86 (2006) 233–250.  Zbl1102.74006
  22. T. Mura, Micromechanics of defects in solids. Kluwer Academic Publishers, Boston (1987).  Zbl0652.73010
  23. F.R.N. Nabarro, Theory of crystal dislocations. Oxford University Press, Oxford (1967).  
  24. J. Necas and I. Hlavacek, Mathematical theory of elastic and elastico-plastic bodies: An introduction. Elsevier, Amsterdam (1981).  Zbl0448.73009
  25. P. Neff, On Korn's first inequality with nonconstant coefficients. Proc. Roy. Soc. Edinb. A132 (2002) 221–243.  Zbl1143.74311
  26. J.F. Nye, Some geometrical relations in dislocated crystals. Acta Metall.1 (1953) 153–162.  
  27. M. Ortiz and E.A. Repetto, Nonconvex energy minimization and dislocation structures in ductile single crystals. J. Mech. Phys. Solids47 (1999) 397–462.  Zbl0964.74012
  28. M. Ortiz, E.A. Repetto and L. Stainier, A theory of subgrain dislocation structures. J. Mech. Phys. Solids48 (2000) 2077–2114.  Zbl1001.74007
  29. G.P. Parry and M. Silhavy, Elastic scalar invariants in the theory of defective crystals. R. Soc. Lond. Proc., Ser. A, Math. Phys. Eng. Sci.455 (1999) 4333–4346.  Zbl0954.74013
  30. Yu.G. Reshetnyak, Liouville's theorem on conformal mappings for minimal regularity assumptions. Siberian Math. J.8 (1967) 631–653.  Zbl0167.36102
  31. B. Svendsen, Continuum thermodynamic models for crystal plasticity including the effects of geometrically necessary dislocations. J. Mech. Phys. Solids50 (2002) 1297–1329.  Zbl1071.74554
  32. R.M. Wald, General Relativity. University of Chicago Press, Chicago (1984).  

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.