A new series of conjectures and open questions in optimization and matrix analysis
ESAIM: Control, Optimisation and Calculus of Variations (2008)
- Volume: 15, Issue: 2, page 454-470
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topHiriart-Urruty, Jean-Baptiste. "A new series of conjectures and open questions in optimization and matrix analysis." ESAIM: Control, Optimisation and Calculus of Variations 15.2 (2008): 454-470. <http://eudml.org/doc/90921>.
@article{Hiriart2008,
abstract = {
We present below a new series of conjectures and open
problems in the fields of (global) Optimization and Matrix analysis, in the
same spirit as our recently published paper [J.-B. Hiriart-Urruty, Potpourri of conjectures and open questions in Nonlinear analysis and Optimization. SIAM
Review49 (2007) 255–273]. With each problem come a succinct presentation, a list of specific
references, and a view on the state of the art of the subject.
},
author = {Hiriart-Urruty, Jean-Baptiste},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {Convex sets; positive (semi)definite matrices;
variational problems; energy functions; global optimization; permanent
function; bistochastic matrices; normal matrices; convex sets; variational problems; permanent function},
language = {eng},
month = {6},
number = {2},
pages = {454-470},
publisher = {EDP Sciences},
title = {A new series of conjectures and open questions in optimization and matrix analysis},
url = {http://eudml.org/doc/90921},
volume = {15},
year = {2008},
}
TY - JOUR
AU - Hiriart-Urruty, Jean-Baptiste
TI - A new series of conjectures and open questions in optimization and matrix analysis
JO - ESAIM: Control, Optimisation and Calculus of Variations
DA - 2008/6//
PB - EDP Sciences
VL - 15
IS - 2
SP - 454
EP - 470
AB -
We present below a new series of conjectures and open
problems in the fields of (global) Optimization and Matrix analysis, in the
same spirit as our recently published paper [J.-B. Hiriart-Urruty, Potpourri of conjectures and open questions in Nonlinear analysis and Optimization. SIAM
Review49 (2007) 255–273]. With each problem come a succinct presentation, a list of specific
references, and a view on the state of the art of the subject.
LA - eng
KW - Convex sets; positive (semi)definite matrices;
variational problems; energy functions; global optimization; permanent
function; bistochastic matrices; normal matrices; convex sets; variational problems; permanent function
UR - http://eudml.org/doc/90921
ER -
References
top- T. Andreescu, O. Mushkarov and L. Stoyanov, Geometric problems on maxima and minima. Birkhäuser (2006).
- M. Atiyah and P. Sutcliffe, The geometry of point particles. Proc. R. Soc. London A458 (2002) 1089–1115.
- M. Atiyah and P. Sutcliffe, Polyhedra in physics, chemistry and geometry. Milan J. Math.71 (2003) 33–58.
- R. Bapat, Mixed discriminants of positive semidefinite matrices. Linear Algebra Appl.126 (1989) 107–124.
- M. Bayart, Épreuve de mathématiques générales du concours d'agrégation de mathématiques 1980. Revue de Mathématiques Spéciales (1980–1981) 220–230.
- A. Ben Tal, A. Nemirovski and C. Roos, Robust solutions of uncertain quadratic and conic-quadratic problems. SIAM J. Optim.13 (2002) 535–560.
- E. Bendito, A. Carmona, A.M. Encinas and J.M. Gesto, Estimation of Fekete points. J. Comput. Phys.225 (2007) 2354–2376.
- D. Bessis, P. Moussa and M. Villani, Monotonic converging variational approximations to the functional integrals in quantum statistical mechanics. J. Math. Phys.16 (1975) 2318–2325.
- R. Bhatia, Matrix analysis. Springer (1997).
- J. Bochnak and J. Siciak, Polynomials and multilinear mappings in topological vector spaces. Studia Math.39 (1971) 59–76.
- G-S. Cheon and I.M. Wanless, An update on Minc's survey of open problems involving permanents. Linear Algebra Appl.403 (2005) 314–342.
- H.T. Croft, K.J. Falconer and R.K. Guy, Unsolved problems in geometry. Springer-verlag (1991).
- K. Derinkuyu and M. Pinar, On the S-procedure and some variants. Math. Meth. Oper. Res.64 (2006) 55–77.
- K. Derinkuyu, M. Pinar and A. Camci, An improved probability bound for the approximate S-lemma. Oper. Res. Lett.35 (2007) 743–746.
- M. Drmota, W. Schachermayer and J. Teichmann, A hyper-geometric approach to the BMV-conjecture. Monatshefte Math.146 (2005) 179–201.
- S.W. Drury, Essentially Hermitian matrices revisited. Electronic J. Linear Algebra15 (2006) 285–296.
- G.P. Egorychev, The solution of Van der Waerden's problem for permanents. Dokl. Akad. Sci. SSSR258 (1981) 1041–1044 (in Russian), Adv. Math.42 (1981) 299–305.
- G.P. Egorychev, Proof of the Van der Waerden conjecture. Siberian Math. J.22 (1982) 854–859.
- L. Elsner and K.D. Ikramov, Normal matrices: an update. Linear Algebra Appl.285 (1998) 291–303.
- D.I. Falikman, A proof of the Van der Waerden conjecture on the permanent of a doubly stochastic matrix. Mat. Zametki29 (1981) 931–938 (in Russian).
- M. Fannes and D. Petz, Perturbation of Wigner matrices and a conjecture. Proc. Amer. Math. Soc.131 (2003) 1981–1988.
- R. Grone, C.R. Johnson, E.M. Sa and H. Wolkowicz, Normal matrices. Linear Algebra Appl.87 (1987) 213–225.
- L. Gurvits, The Van der Waerden conjecture for mixed discriminants. Adv. Math.200 (2006) 435–454.
- L. Gurvits, A proof of hyperbolic Van der Waerden conjecture: the right generalization is the ultimate simplification. Preprint (2006).
- D. Hägele, Proof of the cases of the Lieb-Seiringer formulation of the Bessis-Moussa-Villani conjecture. J. Stat. Phys.127 (2007) 1167–1171.
- O. Hanner and H. Radstrom, A generalization of a theorem of Fenchel. Proceedings of the American Mathematical Society2 (1951) 589–593.
- F. Hansen, Trace functions as Laplace transforms. J. Math. Phys.47 (2006) 043504.
- D.P. Hardin and E.B. Saff, Discretizing manifolds via minimum energy points. Notices Amer. Math. Soc.51 (2004) 1186–1194.
- S. He, Z.-Q. Luo, J. Nie and S. Zhang, Semidefinite relaxation bounds for indefinite homogeneous quadratic optimization. Technical report, Department of systems engineering and engineering management, the Chinese University of Hong-Kong (2007).
- C. Hillar, Advances on the Bessis-Moussa-Villani trace conjecture. Linear Algebra Appl.426 (2007) 130–142.
- C. Hillar and C.R. Johnson, On the positivity of the coefficients of a certain polynomial defined by two positive definite matrices. J. Statist. Phys.118 (2005) 781–789.
- J.-B. Hiriart-Urruty, Potpourri of conjectures and open questions in Nonlinear analysis and Optimization. SIAM Review49 (2007) 255–273.
- J.-B. Hiriart-Urruty and C. Lemaréchal, Convex Analysis and Minimization Algorithms I, Grundlehren der mathematischen Wissenschaften305. Springer-Verlag (1993); 2nd edition in 1996.
- R. Holzman and D.J. Kleitman, On the product of sign vectors and unit vectors. Combinatorica12 (1992) 303–316.
- R.A. Horn and C.R. Johnson, Matrix analysis. Cambridge University Press (1985).
- H.-X. Huang, P. Pardalos and Z.-J. Shen, A point balance algorithm for the spherical code problem. J. Global Optim.19 (2001) 329–344.
- C.R. Johnson and C.J. Hillar, Eigenvalues of words in two positive definite letters. SIAM J. Matrix Anal. Appl.23 (2002) 916–928.
- C.R. Johnson, S. Leichenauer, P. McNamara and R. Costas, Principal minor sums of . Linear Algebra Appl.411 (2005) 386–389.
- H. Joris, Le chasseur perdu dans la forêt : un problème de géométrie plane. Elem. Math.35 (1980) 1–14.
- D. Knuth, A permanent inequality. Amer. Math. Monthly88 (1981) 731–740.
- A.B.J. Kuijlaars and E.B. Saff, Asymptotics for minimal discrete energy on the sphere. Trans. Amer. Math. Soc.350 (1998) 523–538.
- J.C. Lagarias, The Van der Waerden conjecture: two soviet solutions. Notices Amer. Math. Soc.29 (1982) 130–133.
- E.H. Lieb and R. Seiringer, Equivalent forms of the Bessis-Moussa-Villani conjecture. J. Statist. Phys.115 (2004) 185–190.
- M. Marcus and M. Newman, On the minimum of the permanent of a doubly stochastic matrix. Duke Math. J.26 (1959) 61–72.
- H. Minc, Permanents, Encyclopedia of Mathematics and its Applications6. Addison-Wesley, Reading, Mass (1978).
- A. Mouchet, Bounding the ground-sate energy of a many-body system with the differential method. Nuclear Phys. A765 (2006) 319–341.
- A. Mouchet, Upper and lower bounds for an eigenvalue associated with a positive eigenvector J. Math. Phys.47 (2006) 022109.
- P. Moussa, On the representation of as a Laplace transform. Rev. Math. Phy.12 (2000) 621–655.
- P.J. Nahin, When least is best. Princeton University Press (2004).
- Y. Nesterov and A. Nemirovski, Interior-point polynomial algorithms in convex programming. SIAM Studies in Applied Mathematics (1994).
- D. Niven, Maxima and minima without calculus. Reprinted by the Mathematical Association of America (2006).
- J.D. Pinter, Globally optimized spherical point arrangements: model variants and illustrative results. Ann. Oper. Res.104 (2001) 213–230.
- E.A. Rakhmanov, E.B. Saff and Y. Zhou, Minimal discrete energy on the sphere. Math. Res. Lett.1 (1994) 647–662.
- E.B. Saff and A.B.J. Kuijlaars, Distributing many points on the sphere. Math. Intelligencer19 (1997) 5–11.
- S. Smale, Mathematical problems for the next century. Math. Intelligencer20 (1998) 7–15.
- W.J.H. Stortelder, J.J.B. de Swart and J.D. Pinter, Finding elliptic Fekete points sets: two numerical approaches. J. Comput. Appl. Math.130 (2001) 205–216.
- P.L. Takouda, Problèmes d'approximation linéaires coniques : Approches par projections et via Optimisation sous contraintes desemidéfinie positivité. Ph.D. thesis, Paul Sabatier University, Toulouse, France (2003).
- J.H. Van Lint, Notes on Egorychev's proof of the Van der Waerden conjecture. Linear Algebra Appl.39 (1981) 1–8.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.