Injective weak solutions in second-gradient nonlinear elasticity
Timothy J. Healey; Stefan Krömer
ESAIM: Control, Optimisation and Calculus of Variations (2008)
- Volume: 15, Issue: 4, page 863-871
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topReferences
top- R.A. Adams, Sobolev Spaces. Academic Press, New York (1975).
- J.M. Ball, Convexity conditions and existence theorems in nonlinear elasticity. Arch. Rational Mech. Anal.63 (1977) 337–403.
- J.M. Ball, Minimizers and Euler-Lagrange Equations, in Proceedings of I.S.I.M.M. Conf. Paris, Springer-Verlag (1983).
- J.M. Ball, Some open problems in elasticity, in Geometry, Mechanics and Dynamics, P. Newton, P. Holmes and A. Weinstein Eds., Springer-Verlag (2002) 3–59.
- P. Bauman, N.C. Owen and D. Phillips, Maximum principles and a priori estimates for a class of problems from nonlinear elasticity. Ann. Inst. H. Poincaré Anal. Non Linéaire8 (1991) 119–157.
- P. Bauman, D. Phillips and N.C. Owen, Maximal smoothness of solutions to certain Euler-Lagrange equations from nonlinear elasticity. Proc. Royal Soc. Edinburgh119A (1991) 241–263.
- P.G. Ciarlet, Mathematical Elasticity Volume I: Three-Dimensional Elasticity. Elsevier Science Publishers, Amsterdam (1988).
- B. Dacorogna, Direct Methods in the Calculus of Variations. Springer-Verlag, New York (1989).
- G. Dal Maso, I. Fonseca, G. Leoni and M. Morini, Higher-order quasiconvexity reduces to quasiconvexity. Arch. Rational Mech. Anal.171 (2004) 55–81.
- E. Giusti, Direct Methods in the Calculus of Variations. World Scientific, New Jersey (2003).
- E.L. Montes-Pizarro and P.V. Negron-Marrero, Local bifurcation analysis of a second gradient model for deformations of a rectangular slab. J. Elasticity86 (2007) 173–204.
- J. Nečas, Les Méthodes Directes en Théorie des Équations Elliptiques. Masson, Paris (1967).
- X. Yan, Maximal smoothness for solutions to equilibrium equations in 2D nonlinear elasticity. Proc. Amer. Math. Soc.135 (2007) 1717–1724.