Maximum principles and a priori estimates for a class of problems from nonlinear elasticity
Patricia Bauman; Nicholas C. Owen; Daniel Phillips
Annales de l'I.H.P. Analyse non linéaire (1991)
- Volume: 8, Issue: 2, page 119-157
- ISSN: 0294-1449
Access Full Article
topHow to cite
topBauman, Patricia, Owen, Nicholas C., and Phillips, Daniel. "Maximum principles and a priori estimates for a class of problems from nonlinear elasticity." Annales de l'I.H.P. Analyse non linéaire 8.2 (1991): 119-157. <http://eudml.org/doc/78247>.
@article{Bauman1991,
author = {Bauman, Patricia, Owen, Nicholas C., Phillips, Daniel},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {gradient estimate; energy functional},
language = {eng},
number = {2},
pages = {119-157},
publisher = {Gauthier-Villars},
title = {Maximum principles and a priori estimates for a class of problems from nonlinear elasticity},
url = {http://eudml.org/doc/78247},
volume = {8},
year = {1991},
}
TY - JOUR
AU - Bauman, Patricia
AU - Owen, Nicholas C.
AU - Phillips, Daniel
TI - Maximum principles and a priori estimates for a class of problems from nonlinear elasticity
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1991
PB - Gauthier-Villars
VL - 8
IS - 2
SP - 119
EP - 157
LA - eng
KW - gradient estimate; energy functional
UR - http://eudml.org/doc/78247
ER -
References
top- [1] J.M. Ball, Convexity Conditions and Existence Theorems in Nonlinear Elasticity, Arch. Rational Mech. Anal., vol. 63, 1977, pp. 337-403. Zbl0368.73040MR475169
- [2] J.M. Ball, Minimizers and the Euler-Lagrange Equations, Proc. of I.S.I.M.M. Conf., Paris, Springer-Verlag, 1983. MR755716
- [3] J.M. Ball and F. Murat, W1,p-Quasiconvexity and Variational Problems for Multiple Integrals, J. Funct. Anal., vol. 58, 1984, pp. 225-253. Zbl0549.46019MR759098
- [4] L.C. Evans, Quasiconvexity and Partial Regularity in the Calculus of Variations, Arch Rational Mech. Anal., vol. 95, 1986, pp. 227-252. Zbl0627.49006MR853966
- L.C. Evans and R.F. Gariepy, Blow-up, Compactness and Partial Regularity in the Calculus of Variations, Indiana U. Math. J., vol. 36, 1987, pp. 361-371. Zbl0626.49007MR891780
- [6] M. Giaquinta, Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems, Princeton University Press, Princeton, 1983. Zbl0516.49003MR717034
- [7] M. Giaquinta, G. Modica and J. Souček, Cartesian Currents, Weak Diffeomorphisms and Existence Theorems in Nonlinear Elasticity, Arch. Rational Mech. Anal., vol. 106, 1989, pp. 97-159. Zbl0677.73014MR980756
- [8] D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, 2nd edition, Springer-Verlag, 1983. Zbl0562.35001MR737190
- [9] N.S. Trudinger, Local Estimates for Subsolutions and Supersolutions of General Second Order Elliptic Quasilinear Equations, Invent. Math., vol. 61, 1980, pp. 67-79. Zbl0453.35028MR587334
Citations in EuDML Documents
top- Timothy J. Healey, Stefan Krömer, Injective weak solutions in second-gradient nonlinear elasticity
- Timothy J. Healey, Stefan Krömer, Injective weak solutions in second-gradient nonlinear elasticity
- Xiaodong Yan, Jonathan Bevan, Minimizers with topological singularities in two dimensional elasticity
- Jonathan Bevan, Xiaodong Yan, Minimizers with topological singularities in two dimensional elasticity
- Emilio Acerbi, Irene Fonseca, Nicola Fusco, Regularity of minimizers for a class of membrane energies
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.