Maximum principles and a priori estimates for a class of problems from nonlinear elasticity

Patricia Bauman; Nicholas C. Owen; Daniel Phillips

Annales de l'I.H.P. Analyse non linéaire (1991)

  • Volume: 8, Issue: 2, page 119-157
  • ISSN: 0294-1449

How to cite

top

Bauman, Patricia, Owen, Nicholas C., and Phillips, Daniel. "Maximum principles and a priori estimates for a class of problems from nonlinear elasticity." Annales de l'I.H.P. Analyse non linéaire 8.2 (1991): 119-157. <http://eudml.org/doc/78247>.

@article{Bauman1991,
author = {Bauman, Patricia, Owen, Nicholas C., Phillips, Daniel},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {gradient estimate; energy functional},
language = {eng},
number = {2},
pages = {119-157},
publisher = {Gauthier-Villars},
title = {Maximum principles and a priori estimates for a class of problems from nonlinear elasticity},
url = {http://eudml.org/doc/78247},
volume = {8},
year = {1991},
}

TY - JOUR
AU - Bauman, Patricia
AU - Owen, Nicholas C.
AU - Phillips, Daniel
TI - Maximum principles and a priori estimates for a class of problems from nonlinear elasticity
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1991
PB - Gauthier-Villars
VL - 8
IS - 2
SP - 119
EP - 157
LA - eng
KW - gradient estimate; energy functional
UR - http://eudml.org/doc/78247
ER -

References

top
  1. [1] J.M. Ball, Convexity Conditions and Existence Theorems in Nonlinear Elasticity, Arch. Rational Mech. Anal., vol. 63, 1977, pp. 337-403. Zbl0368.73040MR475169
  2. [2] J.M. Ball, Minimizers and the Euler-Lagrange Equations, Proc. of I.S.I.M.M. Conf., Paris, Springer-Verlag, 1983. MR755716
  3. [3] J.M. Ball and F. Murat, W1,p-Quasiconvexity and Variational Problems for Multiple Integrals, J. Funct. Anal., vol. 58, 1984, pp. 225-253. Zbl0549.46019MR759098
  4. [4] L.C. Evans, Quasiconvexity and Partial Regularity in the Calculus of Variations, Arch Rational Mech. Anal., vol. 95, 1986, pp. 227-252. Zbl0627.49006MR853966
  5. L.C. Evans and R.F. Gariepy, Blow-up, Compactness and Partial Regularity in the Calculus of Variations, Indiana U. Math. J., vol. 36, 1987, pp. 361-371. Zbl0626.49007MR891780
  6. [6] M. Giaquinta, Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems, Princeton University Press, Princeton, 1983. Zbl0516.49003MR717034
  7. [7] M. Giaquinta, G. Modica and J. Souček, Cartesian Currents, Weak Diffeomorphisms and Existence Theorems in Nonlinear Elasticity, Arch. Rational Mech. Anal., vol. 106, 1989, pp. 97-159. Zbl0677.73014MR980756
  8. [8] D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, 2nd edition, Springer-Verlag, 1983. Zbl0562.35001MR737190
  9. [9] N.S. Trudinger, Local Estimates for Subsolutions and Supersolutions of General Second Order Elliptic Quasilinear Equations, Invent. Math., vol. 61, 1980, pp. 67-79. Zbl0453.35028MR587334

Citations in EuDML Documents

top
  1. Timothy J. Healey, Stefan Krömer, Injective weak solutions in second-gradient nonlinear elasticity
  2. Timothy J. Healey, Stefan Krömer, Injective weak solutions in second-gradient nonlinear elasticity
  3. Xiaodong Yan, Jonathan Bevan, Minimizers with topological singularities in two dimensional elasticity
  4. Jonathan Bevan, Xiaodong Yan, Minimizers with topological singularities in two dimensional elasticity
  5. Emilio Acerbi, Irene Fonseca, Nicola Fusco, Regularity of minimizers for a class of membrane energies

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.