When is a cogenerator in a topos ?
Cahiers de Topologie et Géométrie Différentielle Catégoriques (1975)
- Volume: 16, Issue: 1, page 3-15
- ISSN: 1245-530X
Access Full Article
topHow to cite
topBorceux, Francis. "When is $\Omega $ a cogenerator in a topos ?." Cahiers de Topologie et Géométrie Différentielle Catégoriques 16.1 (1975): 3-15. <http://eudml.org/doc/91147>.
@article{Borceux1975,
author = {Borceux, Francis},
journal = {Cahiers de Topologie et Géométrie Différentielle Catégoriques},
language = {eng},
number = {1},
pages = {3-15},
publisher = {Dunod éditeur, publié avec le concours du CNRS},
title = {When is $\Omega $ a cogenerator in a topos ?},
url = {http://eudml.org/doc/91147},
volume = {16},
year = {1975},
}
TY - JOUR
AU - Borceux, Francis
TI - When is $\Omega $ a cogenerator in a topos ?
JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY - 1975
PB - Dunod éditeur, publié avec le concours du CNRS
VL - 16
IS - 1
SP - 3
EP - 15
LA - eng
UR - http://eudml.org/doc/91147
ER -
References
top- [1] F. Borceux and G.M. Kelly, A notion of limit for enriched categories, Bul. Austr. Math. Soc.12 (1975), 49-72. Zbl0329.18011MR369477
- [2] S. Eilenberg and G.M. Kelly, Closed categories, Proc. Conf. on Cat. Alg., La Jolla (1965). Zbl0192.10604MR225841
- [3] S. Eilenberg and J.C. Moore, Adjoint functors and triples, Ill. J. of Math.V-2 (1965), 381-398. Zbl0135.02103MR184984
- [4] P. Freyd, Some aspects of topoi, Bull. of the Austr. Math. Soc.7-1 (1972), 1-76. Zbl0252.18001MR396714
- [5] W. Mitchell, Boolean topoi and the theory of sets, J. Pure and App. Alg. (Oct. 1972). Zbl0245.18001MR319757
- [6] M. Tierney, Sheaf theory and the continuum hypothesis, Proc. of the Halifax Conf. on Category theory, intuitionistic Logic and Algebraic Geometry, Springer, Lect. Notes in Math.274 (1973). Zbl0244.18005MR373888
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.