Limites enrichies et existence de V -foncteur adjoint

Francis Borceux

Cahiers de Topologie et Géométrie Différentielle Catégoriques (1975)

  • Volume: 16, Issue: 4, page 395-408
  • ISSN: 1245-530X

How to cite

top

Borceux, Francis. "Limites enrichies et existence de $V$-foncteur adjoint." Cahiers de Topologie et Géométrie Différentielle Catégoriques 16.4 (1975): 395-408. <http://eudml.org/doc/91154>.

@article{Borceux1975,
author = {Borceux, Francis},
journal = {Cahiers de Topologie et Géométrie Différentielle Catégoriques},
language = {fre},
number = {4},
pages = {395-408},
publisher = {Dunod éditeur, publié avec le concours du CNRS},
title = {Limites enrichies et existence de $V$-foncteur adjoint},
url = {http://eudml.org/doc/91154},
volume = {16},
year = {1975},
}

TY - JOUR
AU - Borceux, Francis
TI - Limites enrichies et existence de $V$-foncteur adjoint
JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY - 1975
PB - Dunod éditeur, publié avec le concours du CNRS
VL - 16
IS - 4
SP - 395
EP - 408
LA - fre
UR - http://eudml.org/doc/91154
ER -

References

top
  1. [1] F. Borceux, When is Ω a cogenerator in a topos? Cab. Topo. et Géom. Diff.XV-4 (1974). Zbl0311.18006
  2. [2] F. Borceux and G.M. Kelly, A notion of limit for enriched categories, Bull. Austr. Math. Soc.12 (1975), 49-72. Zbl0329.18011MR369477
  3. [3] B. Day, On closed categories of functors, Lect. Notes in Math. 137, Springer (1970), 1-38. Zbl0203.31402MR272852
  4. [4] B. Day and G.M. Kelly, Enriched functor categories, Lect. Notes in Math. 106, Springer (1969), 178-191. Zbl0214.03202MR255633
  5. [5] E. Dubuc, Kan extensions in enriched category theory, Lect. Notes in Math.145, Springer (1970). Zbl0228.18002MR280560
  6. [6] S. Eilenberg and G.M. Kelly, Closed categories. Proc. Conf. on Categ. Alg., La Jolla1965, Springer (1966). 421-562. Zbl0192.10604MR225841
  7. [7] F. Foltz, Produit tensoriel généralisé, Cahiers Topo. et Géom. diff.X-3 (1968), 301-331. Zbl0191.01304MR244338
  8. [8] P. Freyd, Algebra valued functors in general categories and tensor products in particular, Colloq. Math.14 (1966). Zbl0144.01003MR195920
  9. [9] R. Lavendhomme, Limites relatives, Math. Zeit.122 (1971), 275-284. Zbl0224.18004MR288161
  10. [10] H. Schubert, Categories, Springer, 1972. Zbl0253.18002MR349793

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.