Free, iteratively closed categories of complete lattices

Mitchell Wand

Cahiers de Topologie et Géométrie Différentielle Catégoriques (1975)

  • Volume: 16, Issue: 4, page 415-424
  • ISSN: 1245-530X

How to cite

top

Wand, Mitchell. "Free, iteratively closed categories of complete lattices." Cahiers de Topologie et Géométrie Différentielle Catégoriques 16.4 (1975): 415-424. <http://eudml.org/doc/91156>.

@article{Wand1975,
author = {Wand, Mitchell},
journal = {Cahiers de Topologie et Géométrie Différentielle Catégoriques},
language = {eng},
number = {4},
pages = {415-424},
publisher = {Dunod éditeur, publié avec le concours du CNRS},
title = {Free, iteratively closed categories of complete lattices},
url = {http://eudml.org/doc/91156},
volume = {16},
year = {1975},
}

TY - JOUR
AU - Wand, Mitchell
TI - Free, iteratively closed categories of complete lattices
JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY - 1975
PB - Dunod éditeur, publié avec le concours du CNRS
VL - 16
IS - 4
SP - 415
EP - 424
LA - eng
UR - http://eudml.org/doc/91156
ER -

References

top
  1. 1 Bekic H., Definable operations in general algebras and the Theory of Automata and Flowcharts, I.B.M. Vienna, 1969. 
  2. 2 Reynolds J.C., Notes on a lattice-theoretical approach to the Theory of Computation, Dept. of Systems & Info. Sc., Syracuse University, 1972. 
  3. 3 Scott D., The lattice of flow diagrams, Oxford U. Comp. Lab., Rep. PRG-3, 1970. MR278849
  4. 4 Scott D., Data types as lattices, Lecture Notes, Amsterdam, 19, 2. 
  5. 5 Tarski A., A lattice-theoretical fixpoint theorem and its applications, Pacific J. of Math.5 (1955), 285-309. Zbl0064.26004MR74376
  6. 6 Wagner E.G., An algebraic theory of recursive definitions and recursive languages, Proc. 3d ACM Symp. Th. Comp. (1971), 12-23. Zbl0252.02048
  7. 7 Wand M., A concrete approach to abstract recursive definitions, Automata, Languages & Programming (M. Nivat ed.), North-Holland, 1973, 331-341. Zbl0278.68066MR366767
  8. 8 Wand M., Mathematical foundations of Formal Language Theory. Project MAC TR-108, M.I.T., Cambridge, Mass. 1973. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.