The epis of the category of ordered algebras and Z -continuous homomorphisms

Ana Pasztor

Cahiers de Topologie et Géométrie Différentielle Catégoriques (1983)

  • Volume: 24, Issue: 2, page 203-214
  • ISSN: 1245-530X

How to cite

top

Pasztor, Ana. "The epis of the category of ordered algebras and $Z$-continuous homomorphisms." Cahiers de Topologie et Géométrie Différentielle Catégoriques 24.2 (1983): 203-214. <http://eudml.org/doc/91327>.

@article{Pasztor1983,
author = {Pasztor, Ana},
journal = {Cahiers de Topologie et Géométrie Différentielle Catégoriques},
keywords = {partial algebras; partial orders; epimorphisms; closure operator; Z- continuous epimorphisms; full subcategory},
language = {eng},
number = {2},
pages = {203-214},
publisher = {Dunod éditeur, publié avec le concours du CNRS},
title = {The epis of the category of ordered algebras and $Z$-continuous homomorphisms},
url = {http://eudml.org/doc/91327},
volume = {24},
year = {1983},
}

TY - JOUR
AU - Pasztor, Ana
TI - The epis of the category of ordered algebras and $Z$-continuous homomorphisms
JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY - 1983
PB - Dunod éditeur, publié avec le concours du CNRS
VL - 24
IS - 2
SP - 203
EP - 214
LA - eng
KW - partial algebras; partial orders; epimorphisms; closure operator; Z- continuous epimorphisms; full subcategory
UR - http://eudml.org/doc/91327
ER -

References

top
  1. 1 Adámek) J., Nelson, E.& Reiterman, J., Tree construction of free continuous algebras, J. of Comp. and SystemSci.24- 1 (1982), 114- 146. Zbl0477.06001MR645852
  2. 2 Andréka, H. & Németi, I., Generalization of the conceptofvarietyandquasi variety to partial algebras through category theory, Dissert. Math. CCIV, Warszawa (1981), 101 pages. Zbl0518.08007
  3. 3 Burmeister, P., Partial algebras - Survey of a unifying approach towards a two-valued model theory for partial algebras, Algebra Univers. (to appear). Zbl0511.03014MR689769
  4. 4 Burmeister, P. & Schmidt, J., On the completion of partial algebras, Coll. Math.XVII (1967), 235 - 245. Zbl0153.33601MR224526
  5. 5 Guessarian, I., Algebraic semantics, Lecture Notes in Computer Sciences99 (1981), Springer, 158 pages. Zbl0474.68010MR617908
  6. 6 Nelson, E., Free Z-continuous algebras, Lecture Notes in Math.871, 315-334. Zbl0493.08008
  7. 7 Németi, I., From hereditary classes to varieties in abstract model theory and partial algebras, Beitrage zurAlgebra und Geom.7 (1978), 69-78. Zbl0415.08002MR523522
  8. 8 Németi, I. & Sain, I., Cone-implicational subcategories and some Birkhoff-type theorems (Proc. Coll. Esztergom1977), Coll. Math. Soc. Bolyai29 (1981) Zbl0495.18001
  9. 9 Pasztor, A., Epis of some categories of Z-continuous partial algebras, IFI Report 5A/81, Stuttgart, to appear in Acta Cybernitica. Zbl0517.06007MR699819
  10. 10 Pasztor, A., Ordered algebras are monoreflective in the category of ordered partial algebras, IFI Report 6/81, Stuttgart, and in the Proc. 7th Coll. on Trees in Algebra and Programming, Lille, 1982. Zbl0541.08004

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.