On the categories S p ( X ) and B a n ( X ) . II

Anthony Karel Seda

Cahiers de Topologie et Géométrie Différentielle Catégoriques (1985)

  • Volume: 26, Issue: 2, page 121-133
  • ISSN: 1245-530X

How to cite

top

Seda, Anthony Karel. "On the categories $Sp(X)$ and $Ban(X)$. II." Cahiers de Topologie et Géométrie Différentielle Catégoriques 26.2 (1985): 121-133. <http://eudml.org/doc/91360>.

@article{Seda1985,
author = {Seda, Anthony Karel},
journal = {Cahiers de Topologie et Géométrie Différentielle Catégoriques},
keywords = {category of Banach bundles; adjoint functors},
language = {eng},
number = {2},
pages = {121-133},
publisher = {Dunod éditeur, publié avec le concours du CNRS},
title = {On the categories $Sp(X)$ and $Ban(X)$. II},
url = {http://eudml.org/doc/91360},
volume = {26},
year = {1985},
}

TY - JOUR
AU - Seda, Anthony Karel
TI - On the categories $Sp(X)$ and $Ban(X)$. II
JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY - 1985
PB - Dunod éditeur, publié avec le concours du CNRS
VL - 26
IS - 2
SP - 121
EP - 133
LA - eng
KW - category of Banach bundles; adjoint functors
UR - http://eudml.org/doc/91360
ER -

References

top
  1. 1 N. Dunford & J.T. Schwartz, Linear Operators, Part 1, Interscience, New York1966. 
  2. 2 J.M.G. Fell, Induced representations and Banach*-algebraic bundles, Lecture Notes in Math.582, Springer,(1977). Zbl0372.22001MR457620
  3. 3 G. Gierz, Bundles of topological vector spaces and their duality, Lecture Notes in Math.955, Springer (1982). Zbl0488.46060MR674650
  4. 4 G. Gierz, Integral representations of linear functionals on spaces of sections in separable bundles, preprint, 1983. 
  5. 5 M.S. Henry& D.C. Taylor, Approximation in a Banach space defined by a continuous field of Banach spaces, J. Approximation Theory27 (1979), 76-92. Zbl0429.41027MR554117
  6. 6 K.H. HOFMANN & J.R. LIUKKONEN (Eds.), Recent advances in the representation theory of rings and C*-algebras by continuous sections, Mem. A.M.S.148 (1974). MR342317
  7. 7 K.H. Hofmann, Bundles and sheaves are equivalent in the category of Banach spaces, Lecture Notes in Math.575, Springer (1977), 53-69. Zbl0346.46053MR487491
  8. 8 K.H. Hofmann & K. Keimel, Sheaf theoretical concepts in Analysis, Lecture Notes in Math.753, Springer (1979), 415-441. Zbl0433.46061MR555553
  9. 9 J.W. Kitchen & D.A. Robbins, Gelfand representation of Banach modules, Dissert. Math. (Rozprawy Mat.) (To appear). Zbl0544.46041MR687278
  10. 10 J.W. Kitchen& D.A. Robbins, Sectional representations of Banach modules, Pacific J. Math.109 (1983), 135-156. Zbl0477.46044MR716294
  11. 11 C.J. Mulvey & J.W. Pelletier, The dual locale of a seminormed space, Cahiers Top. et Géom. Diff. XXIII-1 (1982), 73-92. Zbl0475.18006MR648797
  12. 12 J. Renault, A groupoid approach to C*-algebras, Lecture Notes in Math.793, Springer (1980). Zbl0433.46049MR584266
  13. 13 A.K. Seda, Banach bundles of continuous functions and an integral representation Theorem, Trans. A.M.S.270 (1982), 327-332. Zbl0489.46051MR642344
  14. 14 A.K. Seda, On the categories Sp(X) and Ban(X), Cahiers Top. et Géom. Diff.XXIV-1 (1983), 97-112. Zbl0529.46058MR702722
  15. 15 A.K. Seda, Integral representation of linear functionals on spaces of sections, Proc. A.M.S.91 (1984), 549-555. Zbl0521.46061MR746088
  16. 16 Z. Semadeni, Banach spaces of continuous functions, P.W.N., Polish Scientific Publishers, Warsaw1971. Zbl0225.46030MR296671

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.