On the categories and . II
Cahiers de Topologie et Géométrie Différentielle Catégoriques (1985)
- Volume: 26, Issue: 2, page 121-133
- ISSN: 1245-530X
Access Full Article
topHow to cite
topSeda, Anthony Karel. "On the categories $Sp(X)$ and $Ban(X)$. II." Cahiers de Topologie et Géométrie Différentielle Catégoriques 26.2 (1985): 121-133. <http://eudml.org/doc/91360>.
@article{Seda1985,
author = {Seda, Anthony Karel},
journal = {Cahiers de Topologie et Géométrie Différentielle Catégoriques},
keywords = {category of Banach bundles; adjoint functors},
language = {eng},
number = {2},
pages = {121-133},
publisher = {Dunod éditeur, publié avec le concours du CNRS},
title = {On the categories $Sp(X)$ and $Ban(X)$. II},
url = {http://eudml.org/doc/91360},
volume = {26},
year = {1985},
}
TY - JOUR
AU - Seda, Anthony Karel
TI - On the categories $Sp(X)$ and $Ban(X)$. II
JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY - 1985
PB - Dunod éditeur, publié avec le concours du CNRS
VL - 26
IS - 2
SP - 121
EP - 133
LA - eng
KW - category of Banach bundles; adjoint functors
UR - http://eudml.org/doc/91360
ER -
References
top- 1 N. Dunford & J.T. Schwartz, Linear Operators, Part 1, Interscience, New York1966.
- 2 J.M.G. Fell, Induced representations and Banach*-algebraic bundles, Lecture Notes in Math.582, Springer,(1977). Zbl0372.22001MR457620
- 3 G. Gierz, Bundles of topological vector spaces and their duality, Lecture Notes in Math.955, Springer (1982). Zbl0488.46060MR674650
- 4 G. Gierz, Integral representations of linear functionals on spaces of sections in separable bundles, preprint, 1983.
- 5 M.S. Henry& D.C. Taylor, Approximation in a Banach space defined by a continuous field of Banach spaces, J. Approximation Theory27 (1979), 76-92. Zbl0429.41027MR554117
- 6 K.H. HOFMANN & J.R. LIUKKONEN (Eds.), Recent advances in the representation theory of rings and C*-algebras by continuous sections, Mem. A.M.S.148 (1974). MR342317
- 7 K.H. Hofmann, Bundles and sheaves are equivalent in the category of Banach spaces, Lecture Notes in Math.575, Springer (1977), 53-69. Zbl0346.46053MR487491
- 8 K.H. Hofmann & K. Keimel, Sheaf theoretical concepts in Analysis, Lecture Notes in Math.753, Springer (1979), 415-441. Zbl0433.46061MR555553
- 9 J.W. Kitchen & D.A. Robbins, Gelfand representation of Banach modules, Dissert. Math. (Rozprawy Mat.) (To appear). Zbl0544.46041MR687278
- 10 J.W. Kitchen& D.A. Robbins, Sectional representations of Banach modules, Pacific J. Math.109 (1983), 135-156. Zbl0477.46044MR716294
- 11 C.J. Mulvey & J.W. Pelletier, The dual locale of a seminormed space, Cahiers Top. et Géom. Diff. XXIII-1 (1982), 73-92. Zbl0475.18006MR648797
- 12 J. Renault, A groupoid approach to C*-algebras, Lecture Notes in Math.793, Springer (1980). Zbl0433.46049MR584266
- 13 A.K. Seda, Banach bundles of continuous functions and an integral representation Theorem, Trans. A.M.S.270 (1982), 327-332. Zbl0489.46051MR642344
- 14 A.K. Seda, On the categories Sp(X) and Ban(X), Cahiers Top. et Géom. Diff.XXIV-1 (1983), 97-112. Zbl0529.46058MR702722
- 15 A.K. Seda, Integral representation of linear functionals on spaces of sections, Proc. A.M.S.91 (1984), 549-555. Zbl0521.46061MR746088
- 16 Z. Semadeni, Banach spaces of continuous functions, P.W.N., Polish Scientific Publishers, Warsaw1971. Zbl0225.46030MR296671
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.