A constructive “Closed subgroup theorem” for localic groups and groupoids

Peter T. Johnstone

Cahiers de Topologie et Géométrie Différentielle Catégoriques (1989)

  • Volume: 30, Issue: 1, page 3-23
  • ISSN: 1245-530X

How to cite

top

Johnstone, Peter T.. "A constructive “Closed subgroup theorem” for localic groups and groupoids." Cahiers de Topologie et Géométrie Différentielle Catégoriques 30.1 (1989): 3-23. <http://eudml.org/doc/91430>.

@article{Johnstone1989,
author = {Johnstone, Peter T.},
journal = {Cahiers de Topologie et Géométrie Différentielle Catégoriques},
keywords = {topological group; closed subgroup; fibrewise topological group; closed subgroup theorem; localic groups; sublocales; localic groupoids},
language = {eng},
number = {1},
pages = {3-23},
publisher = {Dunod éditeur, publié avec le concours du CNRS},
title = {A constructive “Closed subgroup theorem” for localic groups and groupoids},
url = {http://eudml.org/doc/91430},
volume = {30},
year = {1989},
}

TY - JOUR
AU - Johnstone, Peter T.
TI - A constructive “Closed subgroup theorem” for localic groups and groupoids
JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY - 1989
PB - Dunod éditeur, publié avec le concours du CNRS
VL - 30
IS - 1
SP - 3
EP - 23
LA - eng
KW - topological group; closed subgroup; fibrewise topological group; closed subgroup theorem; localic groups; sublocales; localic groupoids
UR - http://eudml.org/doc/91430
ER -

References

top
  1. 1 J.R. Isbell, Atomless parts of spaces, Math. Scand.31 (1972), 5-32. Zbl0246.54028MR358725
  2. 2 J.R. Isbell, I. Kriz, A. Pultr & J. Rosicky, Remarks on localic groups, Lecture Notes in Math.1348, Springer (1988), 154. Zbl0661.22003MR975968
  3. 3 I.M. James, Fibrewise Topology. Book in preparation. 
  4. 4 P.T. Johnstone, Stone spaces. Cambridge Studies in Advanced Math. n° 3, Cambridge Univ. Press1983. Zbl0499.54001MR698074
  5. 5 P.T. Johnstone, The point of pointless topology, Bull. A. M. S. (N.S.)8 (1983), 41-53. Zbl0499.54002MR682820
  6. 6 P.T. Johnstone, A simple proof that localic subgroups are closed, Cahiers Top. et Géom. Diff. Catég.XXIX (1988), 157-161. Zbl0648.18007MR943899
  7. 7 P.T. Johnstone, A constructive theory of uniform locales, In preparation. Zbl0760.54019
  8. 8 A. Joyal & M. Tierney, An extension of the Galois theory of Grothendieck, Mem. A.M.S.309 (1984). Zbl0541.18002MR756176
  9. 9 A. Kock, A Godement Theorem for locales, Math. Proc. Camb. Philos. Soc. (to appear). Zbl0687.18003
  10. 10 I. Moerdijk, The classifying topos of a continuous groupoid, I. Trans. A.M.S. (to appear). Zbl0706.18007MR973173
  11. 11 I. Moerdijk, The classifying topos of a continuous groupoid, II. (To appear). Zbl0717.18001MR1080241
  12. 12 I. Moerdijk, Toposes and groupoids, Lecture Notes in Math.. 1348, Springer (1988), 280-298. Zbl0659.18008MR975977

NotesEmbed ?

top

You must be logged in to post comments.