A constructive “Closed subgroup theorem” for localic groups and groupoids

Peter T. Johnstone

Cahiers de Topologie et Géométrie Différentielle Catégoriques (1989)

  • Volume: 30, Issue: 1, page 3-23
  • ISSN: 1245-530X

How to cite

top

Johnstone, Peter T.. "A constructive “Closed subgroup theorem” for localic groups and groupoids." Cahiers de Topologie et Géométrie Différentielle Catégoriques 30.1 (1989): 3-23. <http://eudml.org/doc/91430>.

@article{Johnstone1989,
author = {Johnstone, Peter T.},
journal = {Cahiers de Topologie et Géométrie Différentielle Catégoriques},
keywords = {topological group; closed subgroup; fibrewise topological group; closed subgroup theorem; localic groups; sublocales; localic groupoids},
language = {eng},
number = {1},
pages = {3-23},
publisher = {Dunod éditeur, publié avec le concours du CNRS},
title = {A constructive “Closed subgroup theorem” for localic groups and groupoids},
url = {http://eudml.org/doc/91430},
volume = {30},
year = {1989},
}

TY - JOUR
AU - Johnstone, Peter T.
TI - A constructive “Closed subgroup theorem” for localic groups and groupoids
JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY - 1989
PB - Dunod éditeur, publié avec le concours du CNRS
VL - 30
IS - 1
SP - 3
EP - 23
LA - eng
KW - topological group; closed subgroup; fibrewise topological group; closed subgroup theorem; localic groups; sublocales; localic groupoids
UR - http://eudml.org/doc/91430
ER -

References

top
  1. 1 J.R. Isbell, Atomless parts of spaces, Math. Scand.31 (1972), 5-32. Zbl0246.54028MR358725
  2. 2 J.R. Isbell, I. Kriz, A. Pultr & J. Rosicky, Remarks on localic groups, Lecture Notes in Math.1348, Springer (1988), 154. Zbl0661.22003MR975968
  3. 3 I.M. James, Fibrewise Topology. Book in preparation. 
  4. 4 P.T. Johnstone, Stone spaces. Cambridge Studies in Advanced Math. n° 3, Cambridge Univ. Press1983. Zbl0499.54001MR698074
  5. 5 P.T. Johnstone, The point of pointless topology, Bull. A. M. S. (N.S.)8 (1983), 41-53. Zbl0499.54002MR682820
  6. 6 P.T. Johnstone, A simple proof that localic subgroups are closed, Cahiers Top. et Géom. Diff. Catég.XXIX (1988), 157-161. Zbl0648.18007MR943899
  7. 7 P.T. Johnstone, A constructive theory of uniform locales, In preparation. Zbl0760.54019
  8. 8 A. Joyal & M. Tierney, An extension of the Galois theory of Grothendieck, Mem. A.M.S.309 (1984). Zbl0541.18002MR756176
  9. 9 A. Kock, A Godement Theorem for locales, Math. Proc. Camb. Philos. Soc. (to appear). Zbl0687.18003
  10. 10 I. Moerdijk, The classifying topos of a continuous groupoid, I. Trans. A.M.S. (to appear). Zbl0706.18007MR973173
  11. 11 I. Moerdijk, The classifying topos of a continuous groupoid, II. (To appear). Zbl0717.18001MR1080241
  12. 12 I. Moerdijk, Toposes and groupoids, Lecture Notes in Math.. 1348, Springer (1988), 280-298. Zbl0659.18008MR975977

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.