Strong regular and dense generators

Reinhard Börger; Walter Tholen

Cahiers de Topologie et Géométrie Différentielle Catégoriques (1991)

  • Volume: 32, Issue: 3, page 257-276
  • ISSN: 1245-530X

How to cite

top

Börger, Reinhard, and Tholen, Walter. "Strong regular and dense generators." Cahiers de Topologie et Géométrie Différentielle Catégoriques 32.3 (1991): 257-276. <http://eudml.org/doc/91482>.

@article{Börger1991,
author = {Börger, Reinhard, Tholen, Walter},
journal = {Cahiers de Topologie et Géométrie Différentielle Catégoriques},
keywords = {epic families; hom-functors; representation theorem; coproducts; generator},
language = {eng},
number = {3},
pages = {257-276},
publisher = {Dunod éditeur, publié avec le concours du CNRS},
title = {Strong regular and dense generators},
url = {http://eudml.org/doc/91482},
volume = {32},
year = {1991},
}

TY - JOUR
AU - Börger, Reinhard
AU - Tholen, Walter
TI - Strong regular and dense generators
JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY - 1991
PB - Dunod éditeur, publié avec le concours du CNRS
VL - 32
IS - 3
SP - 257
EP - 276
LA - eng
KW - epic families; hom-functors; representation theorem; coproducts; generator
UR - http://eudml.org/doc/91482
ER -

References

top
  1. 1 J. Adámek, H. Herrlich and J. Reiterman, Cocompleteness almost implies completeness, Proc. Conf. Categorical Topology Prague1988. (World Scientific, Singapore1989) pp 246-256. MR1047905
  2. 2 J. Adámek, H. Herrlich and W. Tholen, Monadic decompositions, J. Pure Appl. Algebra59 (1989) 111-123. Zbl0675.18001MR1007916
  3. 3 J. Adámek and W. Tholen, Total categories with generators, J. of Algebra133 (1990) 63-78. Zbl0703.18001MR1063381
  4. 4 H. Artin, A. Grothendieck and J.L. Verdier, Théorie des Topos et Cohomologie Etale des Schémes, Lecture Notes in Math. (Springer-Verlag, Berlin1972) 269. Zbl0234.00007MR463174
  5. 5 R. Börger, Multicoreflective subcategories and coprime objects, Topology Appl.33 (1989) 127-142. Zbl0688.18001MR1020275
  6. 6 R. Börger and M. Rajagopalan, When do all ring homomorphisms depend on only one coordinate?, Arch. Math45 (1985) 223-228. Zbl0558.03024MR807654
  7. 7 R. Börger and W. Tholen, Total categories and solid functors, Canad. J. Math42 (1990) 213-229. Zbl0742.18001MR1051726
  8. 8 R. Börger and W. Tholen, Totality of colimit-closures, Comm. Math. Univ. Carolinae, (submitted). Zbl0760.18002
  9. 9 B. Day and R. Street, Categories in which all strong generators are dense, J. Pure Appl. Algebra43 (1986) 235-242. Zbl0612.18004MR868984
  10. 10 E.J. Dubuc, Adjoint triangles, Lecture Notes in Math. (Springer-Verlag, Berlin1968) 61, 69-91. Zbl0172.02103MR233864
  11. 11 R. Dyckhoff and W. Tholen, Exponentiable morphisms, partial products and pullback complements, J. Pure Appl. Algebra49 (1987) 103-116. Zbl0659.18003MR920516
  12. 12 P. Gabriel and F. Ulmer, Lokal präsentierbare Kategorien, Lecture Notes in Math. (Springer-Verlag, Berlin1971) 221. Zbl0225.18004MR327863
  13. 13 H. Herrlich, Topologische Reflexionen und Coreflexionen, Lecture Notes in Math. (Springer-Verlag, Belin1968) 78. Zbl0182.25302MR256332
  14. 14 R.E. Hoffmann.A categorical concept of connectedness, Tagungsberichte Oberwolfach1974. 
  15. 15 S.A. Huq, An interpolation theorem for adjoint functors, Proc. Amer. Math Soc.25 (1970) 880-883. Zbl0204.33601MR260824
  16. 16 G.B. Im and G.M. Kelly, Some remarks on conservative functors with left adjoint, J. Korean Math Soc.23 (1986) 19-33. Zbl0602.18003MR843247
  17. 17 G.B. Im and G.M. Kelly, Adjoint-triangle theorems for conservative functors, Bull. Austral. Math. Soc.36 (1987) 133-136. Zbl0603.18001MR897429
  18. 18 G.M. Kelly, Monomorphisms, epimorphisms, and pull-backs, J. Austral. Math. Soc.A9 (1969) 142-142. Zbl0169.32604MR240161
  19. 19 G.M. Kelly, TheBasic Concepts of Enriched Category Theory, Cambridge University Press, Cambridge1982. Zbl0478.18005MR651714
  20. 20 G.M. Kelly, A survey on totality for enriched and ordinary categories, Cahiers Topo. Géom. Différentielle Catégoriques27 (1986) 109-132. Zbl0593.18007MR850527
  21. 21 J. MacDonold and A. Stone, Essentially monadic adjunctions, Lecture Notes in Math. (Springer-Verlag, Berlin1982) 962, 167-174. Zbl0498.18003MR682954
  22. 22 B. Pareigis, Categories and Functors, Academic Press, New York-London1970 Zbl0211.32402MR265428
  23. 23 J. Rosický, V. Trnková, J. Adámek, Unexpected properties of locally presentable categories, Algebra Universalis27 (1990) 153-170. Zbl0701.18003MR1037859
  24. 24 H. Schubert, Categories, Springer-Verlag, Berlin1972. Zbl0253.18002MR349793
  25. 25 R. Street, The family approach to total cocompleteness and toposes, Trans. Amer. Math. Soc.284 (1984) 355-369. Zbl0512.18001MR742429
  26. 26 W. Tholen, Adjungierte Dreiecke, Colimites und Kan-Erweiterungen, Math. Ann.217 (1975) 121-129. Zbl0325.18002MR393172
  27. 27 W. Tholen, Amalgamation in Categories, Algebra Universalis14 (1982) 391-397. Zbl0494.18002MR654405

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.