A note on categories enriched in quantaloids and modal and temporal logic

Kimmo I. Rosenthal

Cahiers de Topologie et Géométrie Différentielle Catégoriques (1993)

  • Volume: 34, Issue: 4, page 267-277
  • ISSN: 1245-530X

How to cite

top

Rosenthal, Kimmo I.. "A note on categories enriched in quantaloids and modal and temporal logic." Cahiers de Topologie et Géométrie Différentielle Catégoriques 34.4 (1993): 267-277. <http://eudml.org/doc/91529>.

@article{Rosenthal1993,
author = {Rosenthal, Kimmo I.},
journal = {Cahiers de Topologie et Géométrie Différentielle Catégoriques},
keywords = {modal logic; tense logic; relational presheaf; semantics; quantaloid},
language = {eng},
number = {4},
pages = {267-277},
publisher = {Dunod éditeur, publié avec le concours du CNRS},
title = {A note on categories enriched in quantaloids and modal and temporal logic},
url = {http://eudml.org/doc/91529},
volume = {34},
year = {1993},
}

TY - JOUR
AU - Rosenthal, Kimmo I.
TI - A note on categories enriched in quantaloids and modal and temporal logic
JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY - 1993
PB - Dunod éditeur, publié avec le concours du CNRS
VL - 34
IS - 4
SP - 267
EP - 277
LA - eng
KW - modal logic; tense logic; relational presheaf; semantics; quantaloid
UR - http://eudml.org/doc/91529
ER -

References

top
  1. 1 S. Abramsky & S. Vickers, Quantales, observational logic, and process semantics, Imperial College Research Report N° DC 90/1, 1990. Zbl0823.06011
  2. 2 R. Betti & S. Kasangian, Tree automata and enriched category theory, Rend. Istit. Mat. Univ. Trieste17, n° 1-2 (1985), 71-78. Zbl0614.68045MR863557
  3. 3 A. Carboni& R.F.C. Walters, Cartesian bicategories I, J. Pure. & Appl. Algebra49 (1987), 1-32. Zbl0637.18003MR920513
  4. 4 R. Casley, R. Crow, J. Meseguer& V. Pratt, Temporal structures, Math. Structures in Comp. Science1, n° 2 (1991), 179-213. Zbl0756.18006MR1132147
  5. 5 S. Ghilardi & G.C. Meloni, Modal and tense predicate logic: models in presheaves and categorical conceptualization, Lecture Notes in Math.1348, Springer (1988), 130-142. Zbl0657.03008MR975966
  6. 6 S. Ghilardi & G.C. Meloni, Relational and topological semantics for temporal and modal predicative logic, Proc. of the SILFS Conf. 1990. Zbl0729.03008
  7. 7 J. Goguen, On homomorphisms, correctness, termination, unfoldments and equivalence of flow diagram programs, J. Comp. Syst. Science8 (1974), 333-365. Zbl0285.68010MR373358
  8. 8 J. Goguen, A categorical manifesto, Math. Structures in Comp. Science1, n° 1 (1991), 49-67. Zbl0747.18001MR1108804
  9. 9 A. Joyal & M. Tierney, An extension of the Galois theory of Grothendieck, AMS Memoirs309, 1984. Zbl0541.18002MR756176
  10. 10 F.W. Lawvere, Metric spaces, generalized logic, and closed categories, Rend. Sem. Mat. e Fis. Milano (1973), 135-166. Zbl0335.18006MR352214
  11. 11 A. Pitts, Applications of sup-lattice enriched category theory to sheaf theory, Proc. London Math. Soc.57-3 (1988), 433-480. Zbl0619.18005MR960096
  12. 12 G. Reyes& H. Zolfaghari, Bi-Heyting algebras, topos and modalities, Rapport de Rech., D.M.S. N° 91-9, Univ. Montréal1991. Zbl0851.03022
  13. 13 K.I. Rosenthal, Quantales and their applications, PitmanResearch Notes in Math. 234, Longman1990. Zbl0703.06007MR1088258
  14. 14 K.I. Rosenthal, Free quantaloids, J. Pure & Appl. Algebra72 (1991), 67-82. Zbl0729.18007MR1115568
  15. 15 K.I. Rosenthal, Girard quantaloids, Math. Structures in Comp. Science2 N°1 (1992), 93-108. Zbl0761.18008MR1159501
  16. 16 K.I. Rosenthal, Quantaloidal nuclei, the syntactic congruence and tree automata, J. Pure & Appl. Algebra77 (1992), 189-205. Zbl0761.18009MR1149021
  17. 17 K.I. Rosenthal, The theory of quantaloids (in preparation). Zbl0845.18003

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.