Finitely generated universal varieties of distributive double p -algebras

V. Koubek; J. Sichler

Cahiers de Topologie et Géométrie Différentielle Catégoriques (1994)

  • Volume: 35, Issue: 2, page 139-164
  • ISSN: 1245-530X

How to cite

top

Koubek, V., and Sichler, J.. "Finitely generated universal varieties of distributive double $p$-algebras." Cahiers de Topologie et Géométrie Différentielle Catégoriques 35.2 (1994): 139-164. <http://eudml.org/doc/91540>.

@article{Koubek1994,
author = {Koubek, V., Sichler, J.},
journal = {Cahiers de Topologie et Géométrie Différentielle Catégoriques},
keywords = {universal varieties; Priestley duality; distributive double -algebras; finitely generated varieties},
language = {eng},
number = {2},
pages = {139-164},
publisher = {Dunod éditeur, publié avec le concours du CNRS},
title = {Finitely generated universal varieties of distributive double $p$-algebras},
url = {http://eudml.org/doc/91540},
volume = {35},
year = {1994},
}

TY - JOUR
AU - Koubek, V.
AU - Sichler, J.
TI - Finitely generated universal varieties of distributive double $p$-algebras
JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY - 1994
PB - Dunod éditeur, publié avec le concours du CNRS
VL - 35
IS - 2
SP - 139
EP - 164
LA - eng
KW - universal varieties; Priestley duality; distributive double -algebras; finitely generated varieties
UR - http://eudml.org/doc/91540
ER -

References

top
  1. 1 R. Beazer, The determination congruence on double p-algebras, Algebra Universalis6 (1976), 121-129. Zbl0353.06002MR419319
  2. 2 ____, Congruence uniform algebras with pseudocomplementation, Studia Sci. Math. Hungar. (1985), 43-48. Zbl0523.06016MR886003
  3. 3 B. Davey, Subdirectly irreducible distributive double p-algebras, Algebra Universalis8 (1978), 73-88. Zbl0381.06019MR450160
  4. 4 G. Grätzer, Lattice Theory, First Concepts and Distributive Lattices, H. Freeman, San Francisco, 1971. Zbl0232.06001MR321817
  5. 5 V. Koubek, Infinite image homomorphisms of distributive bounded lattices, Lectures in universal algebra, Szeged (Hungary) 1983, North-Holland, Amsterdam, 1985, pp. 241-281, in Colloq. Math. Soc. János Bolyai43. Zbl0597.06009MR860268
  6. 6 V. Koubek and J. Sichler, Universal varieties of distributive double p-algebras, Glasgow Math. J.26 (1985), 121-131. Zbl0574.06009MR798738
  7. 7 ____, Categorical universality of regular double p-algebras, Glasgow Math. J.32 (1990), 329-340. Zbl0714.18002MR1073673
  8. 8 R. McKenzie and J.D. Monk,, On automorphism groups of Boolean algebras, Infinite and finite sets, Keszthely (Hungary) 1973; dedicated to P. Erdös on his 60th birthday, Vol. 2, North-Holland, Amsterdam, 1975, pp. 951-988, in Colloq. Math. Soc. János Bolyai10. Zbl0317.06009MR376476
  9. 9 H.A. Priestley, Representation of distributive lattices by means of ordered Stone spaces, Bull. London Math. Soc.2 (1970), 186-190. Zbl0201.01802MR265242
  10. 10 ____, Ordered topological spaces and the representation of distributive lattices, Proc. London Math. Soc.24 (1972), 507-530. Zbl0323.06011MR300949
  11. 11 ____, Ordered sets and duality for distributive lattices, Ann. Discrete Math.23 (1984), 36-90. Zbl0557.06007
  12. 12 A. Pultr and V. Trnková, Combinatorial, algebraic and topological representations of groups, semigroups and categories, North-Holland, Amsterdam, 1980. Zbl0418.18004MR563525

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.